功能性生物纳米材料的电磁学研究新进展

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
C. Brosseau
{"title":"功能性生物纳米材料的电磁学研究新进展","authors":"C. Brosseau","doi":"10.1016/j.mtnano.2025.100640","DOIUrl":null,"url":null,"abstract":"<div><div>Electro-mechano-biology (EMB) develops and examines different uses of electric excitation that span the electromagnetic spectrum from dc to microwaves to study and control mechanical deformation of cells, focusing on the discovery and application of new phenomena. In this work, we highlight this approach and its limitations to understand the cross-properties between electrical and mechanical modeling of functional biomaterials. Several illustrations based on multiphysics multiscale finite element simulations are proposed. Collectively, these data have important phenomenological implications for modeling the electromechanical effects of cell and nucleus morphology in a confined geometry. We discuss the current challenges for future developments in the analysis of electromagnetism of functional bionanomaterials.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"30 ","pages":"Article 100640"},"PeriodicalIF":8.2000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New horizons for electromagnetism of functional bionanomaterials\",\"authors\":\"C. Brosseau\",\"doi\":\"10.1016/j.mtnano.2025.100640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electro-mechano-biology (EMB) develops and examines different uses of electric excitation that span the electromagnetic spectrum from dc to microwaves to study and control mechanical deformation of cells, focusing on the discovery and application of new phenomena. In this work, we highlight this approach and its limitations to understand the cross-properties between electrical and mechanical modeling of functional biomaterials. Several illustrations based on multiphysics multiscale finite element simulations are proposed. Collectively, these data have important phenomenological implications for modeling the electromechanical effects of cell and nucleus morphology in a confined geometry. We discuss the current challenges for future developments in the analysis of electromagnetism of functional bionanomaterials.</div></div>\",\"PeriodicalId\":48517,\"journal\":{\"name\":\"Materials Today Nano\",\"volume\":\"30 \",\"pages\":\"Article 100640\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588842025000719\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842025000719","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

机电生物学(EMB)开发和研究电激励的不同用途,从直流到微波的电磁频谱,以研究和控制细胞的机械变形,重点是新现象的发现和应用。在这项工作中,我们强调了这种方法及其局限性,以理解功能生物材料的电气和机械建模之间的交叉特性。提出了几种基于多物理场多尺度有限元模拟的实例。总的来说,这些数据具有重要的现象学意义的模拟机电效应的细胞和细胞核形态在一个有限的几何形状。我们讨论了功能性生物纳米材料的电磁分析在未来发展中面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New horizons for electromagnetism of functional bionanomaterials
Electro-mechano-biology (EMB) develops and examines different uses of electric excitation that span the electromagnetic spectrum from dc to microwaves to study and control mechanical deformation of cells, focusing on the discovery and application of new phenomena. In this work, we highlight this approach and its limitations to understand the cross-properties between electrical and mechanical modeling of functional biomaterials. Several illustrations based on multiphysics multiscale finite element simulations are proposed. Collectively, these data have important phenomenological implications for modeling the electromechanical effects of cell and nucleus morphology in a confined geometry. We discuss the current challenges for future developments in the analysis of electromagnetism of functional bionanomaterials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.30
自引率
3.90%
发文量
130
审稿时长
31 days
期刊介绍: Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to: Nanoscale synthesis and assembly Nanoscale characterization Nanoscale fabrication Nanoelectronics and molecular electronics Nanomedicine Nanomechanics Nanosensors Nanophotonics Nanocomposites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信