矢量量子磁强计中六方氮化硼的单自旋

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Carmem M. Gilardoni, Simone Eizagirre Barker, Catherine L. Curtin, Stephanie A. Fraser, Oliver. F. J. Powell, Dillon K. Lewis, Xiaoxi Deng, Andrew J. Ramsay, Sonachand Adhikari, Chi Li, Igor Aharonovich, Hark Hoe Tan, Mete Atatüre, Hannah L. Stern
{"title":"矢量量子磁强计中六方氮化硼的单自旋","authors":"Carmem M. Gilardoni, Simone Eizagirre Barker, Catherine L. Curtin, Stephanie A. Fraser, Oliver. F. J. Powell, Dillon K. Lewis, Xiaoxi Deng, Andrew J. Ramsay, Sonachand Adhikari, Chi Li, Igor Aharonovich, Hark Hoe Tan, Mete Atatüre, Hannah L. Stern","doi":"10.1038/s41467-025-59642-0","DOIUrl":null,"url":null,"abstract":"<p>Quantum sensing based on solid-state spin defects provides a uniquely versatile platform for nanoscale magnetometry under diverse environmental conditions. Operation of most sensors used to-date is based on projective measurement along a single axis combined with computational extrapolation. Here, we show that an individually addressable carbon-related spin defect in hexagonal boron nitride is a multi-axis nanoscale sensor with large dynamic range. For this spin-1 system, we demonstrate how its spin-dependent photodynamics give rise to three optically detected spin resonances that show up to 90% contrast and are not quenched under off-axis magnetic field exceeding 100 mT, enabling <span>\\(\\mu \\,{{\\rm{T}}}/{{{\\rm{Hz}}}^{-1/2}}\\)</span> sensitivity. Finally, we show how this system can be used to unambiguously determine the three components of a target magnetic field via the use of two bias fields. Alongside these features, the room-temperature operation and the nanometer-scale proximity enabled by the van der Waals host material further consolidate this system as a promising quantum sensing platform.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"5 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A single spin in hexagonal boron nitride for vectorial quantum magnetometry\",\"authors\":\"Carmem M. Gilardoni, Simone Eizagirre Barker, Catherine L. Curtin, Stephanie A. Fraser, Oliver. F. J. Powell, Dillon K. Lewis, Xiaoxi Deng, Andrew J. Ramsay, Sonachand Adhikari, Chi Li, Igor Aharonovich, Hark Hoe Tan, Mete Atatüre, Hannah L. Stern\",\"doi\":\"10.1038/s41467-025-59642-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantum sensing based on solid-state spin defects provides a uniquely versatile platform for nanoscale magnetometry under diverse environmental conditions. Operation of most sensors used to-date is based on projective measurement along a single axis combined with computational extrapolation. Here, we show that an individually addressable carbon-related spin defect in hexagonal boron nitride is a multi-axis nanoscale sensor with large dynamic range. For this spin-1 system, we demonstrate how its spin-dependent photodynamics give rise to three optically detected spin resonances that show up to 90% contrast and are not quenched under off-axis magnetic field exceeding 100 mT, enabling <span>\\\\(\\\\mu \\\\,{{\\\\rm{T}}}/{{{\\\\rm{Hz}}}^{-1/2}}\\\\)</span> sensitivity. Finally, we show how this system can be used to unambiguously determine the three components of a target magnetic field via the use of two bias fields. Alongside these features, the room-temperature operation and the nanometer-scale proximity enabled by the van der Waals host material further consolidate this system as a promising quantum sensing platform.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-59642-0\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59642-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

基于固体自旋缺陷的量子传感为不同环境条件下的纳米级磁强计提供了一个独特的通用平台。迄今为止使用的大多数传感器的操作是基于沿单轴的投影测量结合计算外推。在这里,我们展示了六方氮化硼中单独寻址的碳相关自旋缺陷是具有大动态范围的多轴纳米级传感器。对于这个自旋为1的系统,我们展示了它的自旋依赖光动力学如何产生三个光学检测到的自旋共振,显示高达90% contrast and are not quenched under off-axis magnetic field exceeding 100 mT, enabling \(\mu \,{{\rm{T}}}/{{{\rm{Hz}}}^{-1/2}}\) sensitivity. Finally, we show how this system can be used to unambiguously determine the three components of a target magnetic field via the use of two bias fields. Alongside these features, the room-temperature operation and the nanometer-scale proximity enabled by the van der Waals host material further consolidate this system as a promising quantum sensing platform.
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A single spin in hexagonal boron nitride for vectorial quantum magnetometry

A single spin in hexagonal boron nitride for vectorial quantum magnetometry

Quantum sensing based on solid-state spin defects provides a uniquely versatile platform for nanoscale magnetometry under diverse environmental conditions. Operation of most sensors used to-date is based on projective measurement along a single axis combined with computational extrapolation. Here, we show that an individually addressable carbon-related spin defect in hexagonal boron nitride is a multi-axis nanoscale sensor with large dynamic range. For this spin-1 system, we demonstrate how its spin-dependent photodynamics give rise to three optically detected spin resonances that show up to 90% contrast and are not quenched under off-axis magnetic field exceeding 100 mT, enabling \(\mu \,{{\rm{T}}}/{{{\rm{Hz}}}^{-1/2}}\) sensitivity. Finally, we show how this system can be used to unambiguously determine the three components of a target magnetic field via the use of two bias fields. Alongside these features, the room-temperature operation and the nanometer-scale proximity enabled by the van der Waals host material further consolidate this system as a promising quantum sensing platform.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信