对“具有强磁光性质的两对同手性平行四边形Dy4团簇配合物”的修正

IF 4.7 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Cai-Ming Liu, Rong Sun, Xiang Hao, Bing-Wu Wang
{"title":"对“具有强磁光性质的两对同手性平行四边形Dy4团簇配合物”的修正","authors":"Cai-Ming Liu, Rong Sun, Xiang Hao, Bing-Wu Wang","doi":"10.1021/acs.inorgchem.5c01908","DOIUrl":null,"url":null,"abstract":"Page 20190. The <i>g</i><sub>MCD</sub> values in the original paper were obtained based on <i>g</i><sub>MCD</sub> = 2{Δ<i>ε</i>(<i>B+</i>) – Δ<i>ε</i>(<i>B–</i>)}/{Δ<i>ε</i>(<i>B+</i>) + Δ<i>ε</i>(<i>B–</i>)} = {Δ<i>ε</i>(<i>B+</i>) – Δ<i>ε</i>(<i>B–</i>)}/Δ<i>ε</i>, i.e., <i>g</i><sub>MCD</sub> = 2Δ<i>ε</i>(MCD)/Δ<i>ε</i>(CD), which allows an assessment of the degree to which the Faraday effect of the chiral complex varies with the direction of the magnetic field. Unfortunately, this formula is different from the true meaning of <i>g</i><sub>MCD</sub> = 2(<i>ε</i><sub>+</sub>(<i>B</i>) – <i>ε</i><sub>+</sub>(−<i>B</i>))/(<i>ε</i><sub>+</sub>(<i>B</i>) + <i>ε</i><sub>+</sub>(−<i>B</i>)), i.e., <i>g</i><sub>MCD</sub> = Δ<i>ε</i>(MCD)/<i>ε</i>. The last paragraph of the Results and Discussion section, beginning “For the magneto-optical Faraday effect of chiral isomers, the strength can generally be estimated by the asymmetric factor of MCD, ...” should be replaced with the following: In the study of the magneto-optical effect, the strongest CD peaks caused by the π–π* transition of the C═N chromophore on the Schiff base ligands are the focus. According to <i>g</i><sub>MCD</sub> = Δ<i>ε</i>(MCD)/<i>ε</i>,<sup>64,65</sup> i.e., <i>g</i><sub>MCD</sub> = {Δ<i>ε</i>(<i>B</i>+) – Δ<i>ε</i>(<i>B</i>−)}/(2<i>ε</i>), in Figures 6a and 6b as well as Figures 6c and 6d, the <i>g</i><sub>MCD</sub> values are calculated to be −1.01 × 10<sup>–4</sup> for <i>D</i>-<b>1</b> and −9.73 × 10<sup>–5</sup> for <i>L</i>-<b>1</b> at 325 nm as well as −6.01 × 10<sup>–5</sup> for <i>D</i>-<b>2</b> and −7.38 × 10<sup>–5</sup> for <i>L</i>-<b>2</b> at 330 nm (assuming the standard field is 1.0 T). Their corresponding <i>g</i><sub>CD</sub> values are calculated with <i>g</i><sub>CD</sub> = Δ<i>ε</i>(CD)/<i>ε</i>, giving 2.74 × 10<sup>–4</sup> for <i>D</i>-<b>1</b> and −2.78 × 10<sup>–4</sup> for <i>L</i>-<b>1</b> at 325 nm as well as 1.29 × 10<sup>–4</sup> for <i>D</i>-<b>2</b> and −1.51 × 10<sup>–4</sup> for <i>L</i>-<b>2</b> at 330 nm. Obviously, <i>g</i><sub>MCD</sub> = <i>g</i><sub>CD</sub>Δ<i>ε</i>(MCD)/Δ<i>ε</i>(CD) for the homochiral complexes, in which the Δ<i>ε</i>(MCD)/Δ<i>ε</i>(CD) value corresponds to the incremental percentage of the CD signal strength when the magnetic field is applied. Therefore, the Δ<i>ε</i>(MCD)/Δ<i>ε</i>(CD) values at the CD signal peaks may be used to assess the magneto-optical Faraday effect for the homochiral complexes.<sup>19</sup> The larger the absolute value of Δ<i>ε</i>(MCD)/Δ<i>ε</i>(CD), the stronger the magneto-optical Faraday effect. The Δ<i>ε</i>(MCD)/Δ<i>ε</i>(CD) values at 1.6 T are −59.2% for <i>D</i>-<b>1</b> and 56.0% for <i>L</i>-<b>1</b> at 325 nm, and −74.6% for <i>D</i>-<b>2</b> and 78.2% for <i>L</i>-<b>2</b> at 330 nm. The |Δ<i>ε</i>(MCD)/Δ<i>ε</i>(CD)| values of <i>D</i>-<b>1</b>/<i>L</i>-<b>1</b> at 325 nm and 1.6 T (59.2% and 56.0%) are smaller than those of <i>D</i>-<b>2</b>/<i>L</i>-<b>2</b> at 330 nm and 1.6 T (74.6% and 78.2%), which suggests that the larger conjugated group on the Schiff ligand is beneficial to the magneto-optical Faraday effect. Furthermore, the |Δ<i>ε</i>(MCD)/Δ<i>ε</i>(CD)| values of <i>D</i>-<b>1/</b><i>L</i>-<b>1</b> at 325 nm and 1.6 T and <i>D</i>-<b>2/</b><i>L</i>-<b>2</b> at 330 nm and 1.6 T are large for the π–π* transition, and they are obviously larger than those of [Dy<sub>2</sub>(D-tfc)<sub>4</sub>(chp)<sub>2</sub>(MeOH)<sub>2</sub>]/[Dy<sub>2</sub>(L-tfc)<sub>4</sub>(chp)<sub>2</sub>(MeOH)<sub>2</sub>] at 303 nm and 1.6 T (32.5% and 33.6%),<sup>19</sup> suggesting that <i>D</i>-<b>1/</b><i>L</i>-<b>1</b> and <i>D</i>-<b>2/</b><i>L</i>-<b>2</b> have strong magneto-optical Faraday effects. Figures S16 and S17 should be deleted from the Supporting Information accordingly. These corrections do not alter the overall findings and conclusions of the paper. We apologize for any confusion these errors may cause, and we appreciate the understanding of the editors and readers. This article has not yet been cited by other publications.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"17 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correction to “Two Pairs of Homochiral Parallelogram-like Dy4 Cluster Complexes with Strong Magneto-Optical Properties”\",\"authors\":\"Cai-Ming Liu, Rong Sun, Xiang Hao, Bing-Wu Wang\",\"doi\":\"10.1021/acs.inorgchem.5c01908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Page 20190. The <i>g</i><sub>MCD</sub> values in the original paper were obtained based on <i>g</i><sub>MCD</sub> = 2{Δ<i>ε</i>(<i>B+</i>) – Δ<i>ε</i>(<i>B–</i>)}/{Δ<i>ε</i>(<i>B+</i>) + Δ<i>ε</i>(<i>B–</i>)} = {Δ<i>ε</i>(<i>B+</i>) – Δ<i>ε</i>(<i>B–</i>)}/Δ<i>ε</i>, i.e., <i>g</i><sub>MCD</sub> = 2Δ<i>ε</i>(MCD)/Δ<i>ε</i>(CD), which allows an assessment of the degree to which the Faraday effect of the chiral complex varies with the direction of the magnetic field. Unfortunately, this formula is different from the true meaning of <i>g</i><sub>MCD</sub> = 2(<i>ε</i><sub>+</sub>(<i>B</i>) – <i>ε</i><sub>+</sub>(−<i>B</i>))/(<i>ε</i><sub>+</sub>(<i>B</i>) + <i>ε</i><sub>+</sub>(−<i>B</i>)), i.e., <i>g</i><sub>MCD</sub> = Δ<i>ε</i>(MCD)/<i>ε</i>. The last paragraph of the Results and Discussion section, beginning “For the magneto-optical Faraday effect of chiral isomers, the strength can generally be estimated by the asymmetric factor of MCD, ...” should be replaced with the following: In the study of the magneto-optical effect, the strongest CD peaks caused by the π–π* transition of the C═N chromophore on the Schiff base ligands are the focus. According to <i>g</i><sub>MCD</sub> = Δ<i>ε</i>(MCD)/<i>ε</i>,<sup>64,65</sup> i.e., <i>g</i><sub>MCD</sub> = {Δ<i>ε</i>(<i>B</i>+) – Δ<i>ε</i>(<i>B</i>−)}/(2<i>ε</i>), in Figures 6a and 6b as well as Figures 6c and 6d, the <i>g</i><sub>MCD</sub> values are calculated to be −1.01 × 10<sup>–4</sup> for <i>D</i>-<b>1</b> and −9.73 × 10<sup>–5</sup> for <i>L</i>-<b>1</b> at 325 nm as well as −6.01 × 10<sup>–5</sup> for <i>D</i>-<b>2</b> and −7.38 × 10<sup>–5</sup> for <i>L</i>-<b>2</b> at 330 nm (assuming the standard field is 1.0 T). Their corresponding <i>g</i><sub>CD</sub> values are calculated with <i>g</i><sub>CD</sub> = Δ<i>ε</i>(CD)/<i>ε</i>, giving 2.74 × 10<sup>–4</sup> for <i>D</i>-<b>1</b> and −2.78 × 10<sup>–4</sup> for <i>L</i>-<b>1</b> at 325 nm as well as 1.29 × 10<sup>–4</sup> for <i>D</i>-<b>2</b> and −1.51 × 10<sup>–4</sup> for <i>L</i>-<b>2</b> at 330 nm. Obviously, <i>g</i><sub>MCD</sub> = <i>g</i><sub>CD</sub>Δ<i>ε</i>(MCD)/Δ<i>ε</i>(CD) for the homochiral complexes, in which the Δ<i>ε</i>(MCD)/Δ<i>ε</i>(CD) value corresponds to the incremental percentage of the CD signal strength when the magnetic field is applied. Therefore, the Δ<i>ε</i>(MCD)/Δ<i>ε</i>(CD) values at the CD signal peaks may be used to assess the magneto-optical Faraday effect for the homochiral complexes.<sup>19</sup> The larger the absolute value of Δ<i>ε</i>(MCD)/Δ<i>ε</i>(CD), the stronger the magneto-optical Faraday effect. The Δ<i>ε</i>(MCD)/Δ<i>ε</i>(CD) values at 1.6 T are −59.2% for <i>D</i>-<b>1</b> and 56.0% for <i>L</i>-<b>1</b> at 325 nm, and −74.6% for <i>D</i>-<b>2</b> and 78.2% for <i>L</i>-<b>2</b> at 330 nm. The |Δ<i>ε</i>(MCD)/Δ<i>ε</i>(CD)| values of <i>D</i>-<b>1</b>/<i>L</i>-<b>1</b> at 325 nm and 1.6 T (59.2% and 56.0%) are smaller than those of <i>D</i>-<b>2</b>/<i>L</i>-<b>2</b> at 330 nm and 1.6 T (74.6% and 78.2%), which suggests that the larger conjugated group on the Schiff ligand is beneficial to the magneto-optical Faraday effect. Furthermore, the |Δ<i>ε</i>(MCD)/Δ<i>ε</i>(CD)| values of <i>D</i>-<b>1/</b><i>L</i>-<b>1</b> at 325 nm and 1.6 T and <i>D</i>-<b>2/</b><i>L</i>-<b>2</b> at 330 nm and 1.6 T are large for the π–π* transition, and they are obviously larger than those of [Dy<sub>2</sub>(D-tfc)<sub>4</sub>(chp)<sub>2</sub>(MeOH)<sub>2</sub>]/[Dy<sub>2</sub>(L-tfc)<sub>4</sub>(chp)<sub>2</sub>(MeOH)<sub>2</sub>] at 303 nm and 1.6 T (32.5% and 33.6%),<sup>19</sup> suggesting that <i>D</i>-<b>1/</b><i>L</i>-<b>1</b> and <i>D</i>-<b>2/</b><i>L</i>-<b>2</b> have strong magneto-optical Faraday effects. Figures S16 and S17 should be deleted from the Supporting Information accordingly. These corrections do not alter the overall findings and conclusions of the paper. We apologize for any confusion these errors may cause, and we appreciate the understanding of the editors and readers. This article has not yet been cited by other publications.\",\"PeriodicalId\":40,\"journal\":{\"name\":\"Inorganic Chemistry\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.inorgchem.5c01908\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.5c01908","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

20190页。gMCD值在原来的基础上得到gMCD = 2{Δε(B +) -Δε(B)} /{Δε(B +) +Δε(B)} ={Δε(B +) -Δε(B)} /Δε,即gMCD = 2Δε(MCD) /Δε(CD),它允许一个评估的程度的手性复杂的法拉第效应随磁场的方向。不幸的是,这个公式是不同的真正含义gMCD = 2(ε+ (B) -ε+(−B)) /(ε+ (B) +ε+(−B)),也就是说,gMCD =Δε(MCD) /ε。结果和讨论部分的最后一段,“对于手性异构体的磁光法拉第效应,强度一般可以通过MCD的不对称因子来估计,……”在磁光效应的研究中,由席夫碱配体上C = N发色团π -π *跃迁引起的最强CD峰是重点。根据gMCD = Δε(MCD)/ε,64,65,即gMCD = {Δε(B+) - Δε(B−)}/(2ε),在图6a和图6b以及图6c和图6d中,在325 nm处D-1的gMCD值为- 1.01 × 10-4, L-1的gMCD值为- 9.73 × 10-5,在330 nm处D-2的gMCD值为- 6.01 × 10-5, L-2的gMCD值为- 7.38 × 10-5(假设标准场为1.0 T)。用gCD = Δε(CD)/ε计算其对应的gCD值,得到D-1在325 nm处为2.74 × 10-4, L-1为- 2.78 × 10-4, D-2在330 nm处为1.29 × 10-4, L-2为- 1.51 × 10-4。显然,对于同手性配合物,gMCD = gCDΔε(MCD)/Δε(CD),其中Δε(MCD)/Δε(CD)值对应于施加磁场时CD信号强度的增量百分比。因此,CD信号峰值处的Δε(MCD)/Δε(CD)值可用于评价同手性配合物的磁光法拉第效应Δε(MCD)/Δε(CD)的绝对值越大,磁光法拉第效应越强。在1.6 T处,D-1和L-1的Δε(MCD)/Δε(CD)值分别为- 59.2%和56.0% (325 nm), D-2和L-2的- 74.6%和78.2% (330 nm)。D-1/L-1在325 nm和1.6 T处的|Δε(MCD)/Δε(CD)|值(59.2%和56.0%)小于D-2/L-2在330 nm和1.6 T处的|Δε(MCD)/Δε(CD)|值(74.6%和78.2%),表明席夫配体上较大的共轭基团有利于磁光法拉第效应。此外,D-1/L-1在325 nm和1.6 T处的|Δε(MCD)/Δε(CD)|值较大,在330 nm和1.6 T处的| /L-2 |值明显大于[Dy2(D-tfc)4(chp)2(MeOH)2]/[Dy2(L-tfc)4(chp)2(MeOH)2]在303 nm和1.6 T处的|Δε(MCD)/Δε(CD)|值(32.5%和33.6%),19表明D-1/L-1和D-2/L-2具有较强的磁光法拉第效应。图S16及S17应相应地从“支持资料”中删除。这些更正不会改变论文的总体发现和结论。我们对这些错误可能造成的任何混乱表示歉意,并感谢编辑和读者的理解。这篇文章尚未被其他出版物引用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Correction to “Two Pairs of Homochiral Parallelogram-like Dy4 Cluster Complexes with Strong Magneto-Optical Properties”
Page 20190. The gMCD values in the original paper were obtained based on gMCD = 2{Δε(B+) – Δε(B–)}/{Δε(B+) + Δε(B–)} = {Δε(B+) – Δε(B–)}/Δε, i.e., gMCD = 2Δε(MCD)/Δε(CD), which allows an assessment of the degree to which the Faraday effect of the chiral complex varies with the direction of the magnetic field. Unfortunately, this formula is different from the true meaning of gMCD = 2(ε+(B) – ε+(−B))/(ε+(B) + ε+(−B)), i.e., gMCD = Δε(MCD)/ε. The last paragraph of the Results and Discussion section, beginning “For the magneto-optical Faraday effect of chiral isomers, the strength can generally be estimated by the asymmetric factor of MCD, ...” should be replaced with the following: In the study of the magneto-optical effect, the strongest CD peaks caused by the π–π* transition of the C═N chromophore on the Schiff base ligands are the focus. According to gMCD = Δε(MCD)/ε,64,65 i.e., gMCD = {Δε(B+) – Δε(B−)}/(2ε), in Figures 6a and 6b as well as Figures 6c and 6d, the gMCD values are calculated to be −1.01 × 10–4 for D-1 and −9.73 × 10–5 for L-1 at 325 nm as well as −6.01 × 10–5 for D-2 and −7.38 × 10–5 for L-2 at 330 nm (assuming the standard field is 1.0 T). Their corresponding gCD values are calculated with gCD = Δε(CD)/ε, giving 2.74 × 10–4 for D-1 and −2.78 × 10–4 for L-1 at 325 nm as well as 1.29 × 10–4 for D-2 and −1.51 × 10–4 for L-2 at 330 nm. Obviously, gMCD = gCDΔε(MCD)/Δε(CD) for the homochiral complexes, in which the Δε(MCD)/Δε(CD) value corresponds to the incremental percentage of the CD signal strength when the magnetic field is applied. Therefore, the Δε(MCD)/Δε(CD) values at the CD signal peaks may be used to assess the magneto-optical Faraday effect for the homochiral complexes.19 The larger the absolute value of Δε(MCD)/Δε(CD), the stronger the magneto-optical Faraday effect. The Δε(MCD)/Δε(CD) values at 1.6 T are −59.2% for D-1 and 56.0% for L-1 at 325 nm, and −74.6% for D-2 and 78.2% for L-2 at 330 nm. The |Δε(MCD)/Δε(CD)| values of D-1/L-1 at 325 nm and 1.6 T (59.2% and 56.0%) are smaller than those of D-2/L-2 at 330 nm and 1.6 T (74.6% and 78.2%), which suggests that the larger conjugated group on the Schiff ligand is beneficial to the magneto-optical Faraday effect. Furthermore, the |Δε(MCD)/Δε(CD)| values of D-1/L-1 at 325 nm and 1.6 T and D-2/L-2 at 330 nm and 1.6 T are large for the π–π* transition, and they are obviously larger than those of [Dy2(D-tfc)4(chp)2(MeOH)2]/[Dy2(L-tfc)4(chp)2(MeOH)2] at 303 nm and 1.6 T (32.5% and 33.6%),19 suggesting that D-1/L-1 and D-2/L-2 have strong magneto-optical Faraday effects. Figures S16 and S17 should be deleted from the Supporting Information accordingly. These corrections do not alter the overall findings and conclusions of the paper. We apologize for any confusion these errors may cause, and we appreciate the understanding of the editors and readers. This article has not yet been cited by other publications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信