Weiyun Zhang, Shengding Zhang, Lijuan Hua, Wenxue Bai, Lu Qin, Junqing Yue, Dongyuan Wang, Mengyao Guo, Xuezhao Wang, Harald Renz, Skevaki Chrysanthi, Gang Wang, Zhihong Chen, Haifeng Dong, Min Xie
{"title":"靶向下调上皮雌激素受体α以减轻嗜酸性哮喘中的铁下垂和上皮-间质转化","authors":"Weiyun Zhang, Shengding Zhang, Lijuan Hua, Wenxue Bai, Lu Qin, Junqing Yue, Dongyuan Wang, Mengyao Guo, Xuezhao Wang, Harald Renz, Skevaki Chrysanthi, Gang Wang, Zhihong Chen, Haifeng Dong, Min Xie","doi":"10.1021/acsnano.5c05314","DOIUrl":null,"url":null,"abstract":"Estrogen receptor α (ERα) is involved with the hyperresponsiveness and airway remodeling in asthma, but developing therapies targeting ERα remains challenging due to its multifaceted roles in different cell types and the poor efficacy of systemic ERα intervention in asthma. Previously, we uncovered the association of increased ERα expression in airway epithelial cells with poor pulmonary function and epithelial–mesenchymal transition (EMT) in asthma patients. This study further investigated the association of ERα expression with the ferroptosis and EMT levels in a cohort of eosinophilic asthma (EA) patients as well as in an eosinophil–epithelial coculture cell model. By loading small interfering RNA (siRNA) into a mesoporous silica nanoparticle (MSN) and then coating the extracted bronchial epithelial cytomembrane (CM), a bronchial epithelial CM home-targeting nanoplatform (siRNA@MSN@CM) was constructed to selectively decrease the ERα expression in bronchial epithelial cells. The targeting effect of bronchial epithelial cells was confirmed in vitro and in vivo, demonstrating the successful targeted knockdown of ERα expression. Silencing ERα in epithelial cells effectively prevented ferroptosis and EMT induced by coculturing with ferroptotic eosinophils. Targeted intervention of epithelium ERα with intratracheal delivery of siRNA(ERα)@MSN@CM nanoparticle significantly reduced the levels of ferroptosis in bronchial epithelial cells, airway inflammation, and airway remodeling in asthmatic mouse models. This study introduces an innovative nanomaterial for targeted drug delivery to epithelial cells and underscores the potential of targeted knockdown ERα in bronchial epithelial cells as a therapeutic strategy for asthma treatment.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"50 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeted Knockdown of Epithelial Estrogen Receptor α to Mitigate Ferroptosis and Epithelial–Mesenchymal Transition in Eosinophilic Asthma\",\"authors\":\"Weiyun Zhang, Shengding Zhang, Lijuan Hua, Wenxue Bai, Lu Qin, Junqing Yue, Dongyuan Wang, Mengyao Guo, Xuezhao Wang, Harald Renz, Skevaki Chrysanthi, Gang Wang, Zhihong Chen, Haifeng Dong, Min Xie\",\"doi\":\"10.1021/acsnano.5c05314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estrogen receptor α (ERα) is involved with the hyperresponsiveness and airway remodeling in asthma, but developing therapies targeting ERα remains challenging due to its multifaceted roles in different cell types and the poor efficacy of systemic ERα intervention in asthma. Previously, we uncovered the association of increased ERα expression in airway epithelial cells with poor pulmonary function and epithelial–mesenchymal transition (EMT) in asthma patients. This study further investigated the association of ERα expression with the ferroptosis and EMT levels in a cohort of eosinophilic asthma (EA) patients as well as in an eosinophil–epithelial coculture cell model. By loading small interfering RNA (siRNA) into a mesoporous silica nanoparticle (MSN) and then coating the extracted bronchial epithelial cytomembrane (CM), a bronchial epithelial CM home-targeting nanoplatform (siRNA@MSN@CM) was constructed to selectively decrease the ERα expression in bronchial epithelial cells. The targeting effect of bronchial epithelial cells was confirmed in vitro and in vivo, demonstrating the successful targeted knockdown of ERα expression. Silencing ERα in epithelial cells effectively prevented ferroptosis and EMT induced by coculturing with ferroptotic eosinophils. Targeted intervention of epithelium ERα with intratracheal delivery of siRNA(ERα)@MSN@CM nanoparticle significantly reduced the levels of ferroptosis in bronchial epithelial cells, airway inflammation, and airway remodeling in asthmatic mouse models. This study introduces an innovative nanomaterial for targeted drug delivery to epithelial cells and underscores the potential of targeted knockdown ERα in bronchial epithelial cells as a therapeutic strategy for asthma treatment.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.5c05314\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c05314","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Targeted Knockdown of Epithelial Estrogen Receptor α to Mitigate Ferroptosis and Epithelial–Mesenchymal Transition in Eosinophilic Asthma
Estrogen receptor α (ERα) is involved with the hyperresponsiveness and airway remodeling in asthma, but developing therapies targeting ERα remains challenging due to its multifaceted roles in different cell types and the poor efficacy of systemic ERα intervention in asthma. Previously, we uncovered the association of increased ERα expression in airway epithelial cells with poor pulmonary function and epithelial–mesenchymal transition (EMT) in asthma patients. This study further investigated the association of ERα expression with the ferroptosis and EMT levels in a cohort of eosinophilic asthma (EA) patients as well as in an eosinophil–epithelial coculture cell model. By loading small interfering RNA (siRNA) into a mesoporous silica nanoparticle (MSN) and then coating the extracted bronchial epithelial cytomembrane (CM), a bronchial epithelial CM home-targeting nanoplatform (siRNA@MSN@CM) was constructed to selectively decrease the ERα expression in bronchial epithelial cells. The targeting effect of bronchial epithelial cells was confirmed in vitro and in vivo, demonstrating the successful targeted knockdown of ERα expression. Silencing ERα in epithelial cells effectively prevented ferroptosis and EMT induced by coculturing with ferroptotic eosinophils. Targeted intervention of epithelium ERα with intratracheal delivery of siRNA(ERα)@MSN@CM nanoparticle significantly reduced the levels of ferroptosis in bronchial epithelial cells, airway inflammation, and airway remodeling in asthmatic mouse models. This study introduces an innovative nanomaterial for targeted drug delivery to epithelial cells and underscores the potential of targeted knockdown ERα in bronchial epithelial cells as a therapeutic strategy for asthma treatment.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.