有机染料对金属卤化物钙钛矿宽禁带串联太阳能电池中碘的界面调控

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-05-27 DOI:10.1021/acsnano.5c03542
Xiaoyi Lu, Shujing Zhou, Kexuan Sun, Yuanyuan Meng, Ming Yang, Jiasen Zhang, Ruijia Tian, Jingnan Wang, Haibin Pan, Yang Bai, Yaohua Wang, Zhenhua Song, Bin Han, Xirui Liu, Chuanxiao Xiao, Chang Liu, Jianfeng Zhang, Ziyi Ge
{"title":"有机染料对金属卤化物钙钛矿宽禁带串联太阳能电池中碘的界面调控","authors":"Xiaoyi Lu, Shujing Zhou, Kexuan Sun, Yuanyuan Meng, Ming Yang, Jiasen Zhang, Ruijia Tian, Jingnan Wang, Haibin Pan, Yang Bai, Yaohua Wang, Zhenhua Song, Bin Han, Xirui Liu, Chuanxiao Xiao, Chang Liu, Jianfeng Zhang, Ziyi Ge","doi":"10.1021/acsnano.5c03542","DOIUrl":null,"url":null,"abstract":"In mixed-halide wide-bandgap (WBG, FA<sub>0.8</sub>Cs<sub>0.2</sub>PbI<sub>1.8</sub>Br<sub>1.2</sub>) perovskite solar cells (PSCs), halide ion migration triggered by light exposure results in phase separation. The migrating iodide anions (I<sup>–</sup>) undergo oxidation to iodine (I<sub>2</sub>) upon light exposure, whereas Pb<sup>2+</sup> is reduced to metallic Pb<sup>0</sup>. This process induces irreversible degradation of PSCs, ultimately causing a marked decline in photovoltaic performance. To mitigate this issue, a multifunctional dye molecule, 12-[3-(carboxymethyl)-5-[[4-[4-(2, 2-diphenylvinyl) phenyl]-1, 2, 3, 3a, 4, 8b-hexahydrocyclopenta [b] indol-7-yl] methylene]-4, 4′-dioxo-2′-thioxo-4, 5-dihydro −2′H, 3H-[2, 5′-bithiazolylidene]-3′(4′H)-yl] dodecanoic acid (D358), was introduced at the interface of perovskites. Under electron transfer conditions, the D358 molecule facilitated the reduction of I<sub>2</sub> to I<sup>–</sup> and the oxidation of Pb<sup>0</sup> to Pb<sup>2+</sup>, thereby effectively suppressing halide phase segregation. Furthermore, the defects of PSCs were successfully passivated by the carboxyl groups in the D358 molecule. With the adjustment, the power conversion efficiency (PCE) of the WBG device increased from 18.75 to 19.94%, indicating a significant performance improvement. When integrated with a narrow-bandgap (FA<sub>0.6</sub>MA<sub>0.3</sub>Cs<sub>0.1</sub>Pb<sub>0.5</sub>Sn<sub>0.5</sub>I<sub>3</sub>) subcell, a PCE of 28.83% was obtained by the all-perovskite tandem solar cells. Continuous maximum power point tracking operation for 1000 h (ISOS-L-1 standards, 25 °C) revealed superior stability in D358-treated WBG devices, preserving 82.9% of the initial PCE.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"77 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Organic Dyes for Interfacial Regulation of Iodine in Metal Halide Perovskite Wide-Bandgap and Tandem Solar Cells\",\"authors\":\"Xiaoyi Lu, Shujing Zhou, Kexuan Sun, Yuanyuan Meng, Ming Yang, Jiasen Zhang, Ruijia Tian, Jingnan Wang, Haibin Pan, Yang Bai, Yaohua Wang, Zhenhua Song, Bin Han, Xirui Liu, Chuanxiao Xiao, Chang Liu, Jianfeng Zhang, Ziyi Ge\",\"doi\":\"10.1021/acsnano.5c03542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In mixed-halide wide-bandgap (WBG, FA<sub>0.8</sub>Cs<sub>0.2</sub>PbI<sub>1.8</sub>Br<sub>1.2</sub>) perovskite solar cells (PSCs), halide ion migration triggered by light exposure results in phase separation. The migrating iodide anions (I<sup>–</sup>) undergo oxidation to iodine (I<sub>2</sub>) upon light exposure, whereas Pb<sup>2+</sup> is reduced to metallic Pb<sup>0</sup>. This process induces irreversible degradation of PSCs, ultimately causing a marked decline in photovoltaic performance. To mitigate this issue, a multifunctional dye molecule, 12-[3-(carboxymethyl)-5-[[4-[4-(2, 2-diphenylvinyl) phenyl]-1, 2, 3, 3a, 4, 8b-hexahydrocyclopenta [b] indol-7-yl] methylene]-4, 4′-dioxo-2′-thioxo-4, 5-dihydro −2′H, 3H-[2, 5′-bithiazolylidene]-3′(4′H)-yl] dodecanoic acid (D358), was introduced at the interface of perovskites. Under electron transfer conditions, the D358 molecule facilitated the reduction of I<sub>2</sub> to I<sup>–</sup> and the oxidation of Pb<sup>0</sup> to Pb<sup>2+</sup>, thereby effectively suppressing halide phase segregation. Furthermore, the defects of PSCs were successfully passivated by the carboxyl groups in the D358 molecule. With the adjustment, the power conversion efficiency (PCE) of the WBG device increased from 18.75 to 19.94%, indicating a significant performance improvement. When integrated with a narrow-bandgap (FA<sub>0.6</sub>MA<sub>0.3</sub>Cs<sub>0.1</sub>Pb<sub>0.5</sub>Sn<sub>0.5</sub>I<sub>3</sub>) subcell, a PCE of 28.83% was obtained by the all-perovskite tandem solar cells. Continuous maximum power point tracking operation for 1000 h (ISOS-L-1 standards, 25 °C) revealed superior stability in D358-treated WBG devices, preserving 82.9% of the initial PCE.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.5c03542\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c03542","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在混合卤化物宽带隙(WBG, FA0.8Cs0.2PbI1.8Br1.2)钙钛矿太阳能电池(PSCs)中,光照射引发卤化物离子迁移导致相分离。迁移的碘离子阴离子(I -)在光照下被氧化为碘(I2),而Pb2+则被还原为金属Pb0。这一过程导致psc的不可逆降解,最终导致光伏性能显著下降。为了解决这一问题,在钙钛矿界面上引入了一种多功能染料分子,12-[3-(羧甲基)-5-[[4-[4-(2,2 -二苯乙烯基)苯基]- 1,2,3,3a, 4,8b -六氢环戊[b]吲哚-7-基]亚甲基]- 4,4 ' -二氧基-2 ' -硫氧基- 4,5 -二氢-2 ' h, 3H-[2,5 ' -双噻唑基]-3 ' (4 ' h)-基]十二烷酸(D358)。在电子转移条件下,D358分子促进I2还原为I -, Pb0氧化为Pb2+,从而有效抑制卤化物相偏析。此外,PSCs的缺陷被D358分子中的羧基成功钝化。调整后,WBG器件的功率转换效率(PCE)从18.75%提高到19.94%,性能有了明显改善。当与窄带隙(FA0.6MA0.3Cs0.1Pb0.5Sn0.5I3)亚电池集成时,全钙钛矿串联太阳能电池的PCE为28.83%。连续最大功率点跟踪操作1000小时(iso - l -1标准,25°C), d358处理的WBG器件具有优越的稳定性,保留了初始PCE的82.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Organic Dyes for Interfacial Regulation of Iodine in Metal Halide Perovskite Wide-Bandgap and Tandem Solar Cells

Organic Dyes for Interfacial Regulation of Iodine in Metal Halide Perovskite Wide-Bandgap and Tandem Solar Cells
In mixed-halide wide-bandgap (WBG, FA0.8Cs0.2PbI1.8Br1.2) perovskite solar cells (PSCs), halide ion migration triggered by light exposure results in phase separation. The migrating iodide anions (I) undergo oxidation to iodine (I2) upon light exposure, whereas Pb2+ is reduced to metallic Pb0. This process induces irreversible degradation of PSCs, ultimately causing a marked decline in photovoltaic performance. To mitigate this issue, a multifunctional dye molecule, 12-[3-(carboxymethyl)-5-[[4-[4-(2, 2-diphenylvinyl) phenyl]-1, 2, 3, 3a, 4, 8b-hexahydrocyclopenta [b] indol-7-yl] methylene]-4, 4′-dioxo-2′-thioxo-4, 5-dihydro −2′H, 3H-[2, 5′-bithiazolylidene]-3′(4′H)-yl] dodecanoic acid (D358), was introduced at the interface of perovskites. Under electron transfer conditions, the D358 molecule facilitated the reduction of I2 to I and the oxidation of Pb0 to Pb2+, thereby effectively suppressing halide phase segregation. Furthermore, the defects of PSCs were successfully passivated by the carboxyl groups in the D358 molecule. With the adjustment, the power conversion efficiency (PCE) of the WBG device increased from 18.75 to 19.94%, indicating a significant performance improvement. When integrated with a narrow-bandgap (FA0.6MA0.3Cs0.1Pb0.5Sn0.5I3) subcell, a PCE of 28.83% was obtained by the all-perovskite tandem solar cells. Continuous maximum power point tracking operation for 1000 h (ISOS-L-1 standards, 25 °C) revealed superior stability in D358-treated WBG devices, preserving 82.9% of the initial PCE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信