{"title":"通过mirna递送、mri可见和抗炎纳米药物治疗炎性巨噬细胞靶向动脉粥样硬化","authors":"Xiaodan Li, Yixin Chen, Xin Cao, Wei Feng, Yu Chen, Jun Zhang","doi":"10.1021/acsnano.4c16585","DOIUrl":null,"url":null,"abstract":"Atherosclerosis, a principal cause of fatal cardiovascular diseases, is fundamentally a chronic inflammatory disease. Addressing this, the combined regulation of oxidative stress and inflammation through synergistic modalities offers an efficient therapeutic avenue. In this work, we rationally designed and engineered a highly efficient functional nanosystem, referred to as polydopamine nanoparticles doped with arginine and gadolinium ions (AGPDAR-146a), for the targeted delivery of therapeutic oligonucleotides, specifically microRNA-146a (miR-146a), to inflammatory macrophages within atherosclerotic plaques. AGPDAR-146a nanoparticles effectively load and deliver miR-146a, achieving enhanced accumulation in inflammatory macrophages through the specific interaction between miR-146a and class A scavenger receptors. Functionally, AGPDAR-146a nanoparticles excel in eliminating reactive oxygen species and exert anti-inflammatory effects, principally by modulating the nuclear factor kappa-light-chain-enhancer of activated B cells pathway and the interferon regulatory factor 5 protein, consequently helping to reduce and stabilize atherosclerotic plaques. Additionally, the intrinsic T<sub>1</sub> magnetic resonance imaging capability of AGPDAR-146a nanoparticles enables real-time visualization of the progression of plaque inflammation. Therefore, the engineered nanosystem not only underscores the therapeutic potential of miR-146a in atherosclerosis but also illustrates a versatile microRNA delivery strategy applicable to various diseases characterized by oxidative stress and inflammation.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"59 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inflammatory Macrophage-Targeted Atherosclerosis Treatment by miRNA-Delivered, MRI-Visible, and Anti-Inflammatory Nanomedicine\",\"authors\":\"Xiaodan Li, Yixin Chen, Xin Cao, Wei Feng, Yu Chen, Jun Zhang\",\"doi\":\"10.1021/acsnano.4c16585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atherosclerosis, a principal cause of fatal cardiovascular diseases, is fundamentally a chronic inflammatory disease. Addressing this, the combined regulation of oxidative stress and inflammation through synergistic modalities offers an efficient therapeutic avenue. In this work, we rationally designed and engineered a highly efficient functional nanosystem, referred to as polydopamine nanoparticles doped with arginine and gadolinium ions (AGPDAR-146a), for the targeted delivery of therapeutic oligonucleotides, specifically microRNA-146a (miR-146a), to inflammatory macrophages within atherosclerotic plaques. AGPDAR-146a nanoparticles effectively load and deliver miR-146a, achieving enhanced accumulation in inflammatory macrophages through the specific interaction between miR-146a and class A scavenger receptors. Functionally, AGPDAR-146a nanoparticles excel in eliminating reactive oxygen species and exert anti-inflammatory effects, principally by modulating the nuclear factor kappa-light-chain-enhancer of activated B cells pathway and the interferon regulatory factor 5 protein, consequently helping to reduce and stabilize atherosclerotic plaques. Additionally, the intrinsic T<sub>1</sub> magnetic resonance imaging capability of AGPDAR-146a nanoparticles enables real-time visualization of the progression of plaque inflammation. Therefore, the engineered nanosystem not only underscores the therapeutic potential of miR-146a in atherosclerosis but also illustrates a versatile microRNA delivery strategy applicable to various diseases characterized by oxidative stress and inflammation.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c16585\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c16585","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Inflammatory Macrophage-Targeted Atherosclerosis Treatment by miRNA-Delivered, MRI-Visible, and Anti-Inflammatory Nanomedicine
Atherosclerosis, a principal cause of fatal cardiovascular diseases, is fundamentally a chronic inflammatory disease. Addressing this, the combined regulation of oxidative stress and inflammation through synergistic modalities offers an efficient therapeutic avenue. In this work, we rationally designed and engineered a highly efficient functional nanosystem, referred to as polydopamine nanoparticles doped with arginine and gadolinium ions (AGPDAR-146a), for the targeted delivery of therapeutic oligonucleotides, specifically microRNA-146a (miR-146a), to inflammatory macrophages within atherosclerotic plaques. AGPDAR-146a nanoparticles effectively load and deliver miR-146a, achieving enhanced accumulation in inflammatory macrophages through the specific interaction between miR-146a and class A scavenger receptors. Functionally, AGPDAR-146a nanoparticles excel in eliminating reactive oxygen species and exert anti-inflammatory effects, principally by modulating the nuclear factor kappa-light-chain-enhancer of activated B cells pathway and the interferon regulatory factor 5 protein, consequently helping to reduce and stabilize atherosclerotic plaques. Additionally, the intrinsic T1 magnetic resonance imaging capability of AGPDAR-146a nanoparticles enables real-time visualization of the progression of plaque inflammation. Therefore, the engineered nanosystem not only underscores the therapeutic potential of miR-146a in atherosclerosis but also illustrates a versatile microRNA delivery strategy applicable to various diseases characterized by oxidative stress and inflammation.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.