实现高能锂金属电池本质安全的自调温聚合物电解质

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-05-28 DOI:10.1002/smll.202503672
Lin Wang, Yunpeng Qu, Shugang Xu, Xin Jin, Mengfan Pei, Borui Li, Chang Su, Xigao Jian, Fangyuan Hu
{"title":"实现高能锂金属电池本质安全的自调温聚合物电解质","authors":"Lin Wang,&nbsp;Yunpeng Qu,&nbsp;Shugang Xu,&nbsp;Xin Jin,&nbsp;Mengfan Pei,&nbsp;Borui Li,&nbsp;Chang Su,&nbsp;Xigao Jian,&nbsp;Fangyuan Hu","doi":"10.1002/smll.202503672","DOIUrl":null,"url":null,"abstract":"<p>The pursuit of safe lithium metal batteries (LMBs) with ultrahigh energy density is fundamentally challenged by thermal runaway risks. This study proposes a thermal management strategy through the rational design of a multifunctional gel polymer electrolyte (PPW@GPE). By engineering phase change materials (paraffin wax) within flame-retardant PPBES copolymer matrices via coaxial electrospinning, a self-regulating separator with a dual-phase thermal response is constructed. Subsequent in situ polymerization immobilizes liquid electrolytes into a 3D crosslinked network, achieving simultaneous temperature modulation and ionic conduction optimization. The electrolyte can achieve a uniform hotspot, improve the electrochemical performance and safety of the battery, restrain hotspots, and mitigate temperature rise. In addition, PPW@GPE has excellent flame retardant properties and effectively forms the stabilized carbon layer at high temperatures, effectively protecting battery safety. This Li/PPW@GPE/LFP cell has excellent cycling performance, maintaining 500 stable cycles at 0.2C with only 0.0596% degradation per cycle. In addition, the fluorine-containing monomer helps to form a stable SEI layer and inhibits the growth of lithium dendrites. Through intelligent detection and Comsol simulation, the safety effectiveness of the battery under localized hot spots and external penetration nailing conditions is verified, which provides a new idea for the battery thermal management system.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 27","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Thermoregulating Polymer Electrolytes Enabling Intrinsic Safety in High-Energy Lithium Metal Batteries\",\"authors\":\"Lin Wang,&nbsp;Yunpeng Qu,&nbsp;Shugang Xu,&nbsp;Xin Jin,&nbsp;Mengfan Pei,&nbsp;Borui Li,&nbsp;Chang Su,&nbsp;Xigao Jian,&nbsp;Fangyuan Hu\",\"doi\":\"10.1002/smll.202503672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The pursuit of safe lithium metal batteries (LMBs) with ultrahigh energy density is fundamentally challenged by thermal runaway risks. This study proposes a thermal management strategy through the rational design of a multifunctional gel polymer electrolyte (PPW@GPE). By engineering phase change materials (paraffin wax) within flame-retardant PPBES copolymer matrices via coaxial electrospinning, a self-regulating separator with a dual-phase thermal response is constructed. Subsequent in situ polymerization immobilizes liquid electrolytes into a 3D crosslinked network, achieving simultaneous temperature modulation and ionic conduction optimization. The electrolyte can achieve a uniform hotspot, improve the electrochemical performance and safety of the battery, restrain hotspots, and mitigate temperature rise. In addition, PPW@GPE has excellent flame retardant properties and effectively forms the stabilized carbon layer at high temperatures, effectively protecting battery safety. This Li/PPW@GPE/LFP cell has excellent cycling performance, maintaining 500 stable cycles at 0.2C with only 0.0596% degradation per cycle. In addition, the fluorine-containing monomer helps to form a stable SEI layer and inhibits the growth of lithium dendrites. Through intelligent detection and Comsol simulation, the safety effectiveness of the battery under localized hot spots and external penetration nailing conditions is verified, which provides a new idea for the battery thermal management system.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 27\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202503672\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202503672","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

追求超高能量密度的安全锂金属电池(lmb)面临着热失控风险的根本挑战。本研究通过合理设计多功能凝胶聚合物电解质提出了一种热管理策略(PPW@GPE)。通过同轴静电纺丝技术,在阻燃型PPBES共聚物基体中加入相变材料(石蜡),构建了具有双相热响应的自调节分离器。随后的原位聚合将液体电解质固定成三维交联网络,同时实现温度调制和离子传导优化。该电解质可以实现均匀的热点,提高电池的电化学性能和安全性,抑制热点,减缓温升。此外,PPW@GPE具有优异的阻燃性能,在高温下有效形成稳定的碳层,有效保护电池安全。这种Li/PPW@GPE/LFP电池具有优异的循环性能,在0.2C的温度下保持500次稳定循环,每次循环的降解率仅为0.0596%。此外,含氟单体有助于形成稳定的SEI层,抑制锂枝晶的生长。通过智能检测和Comsol仿真,验证了电池在局部热点和外穿钉工况下的安全有效性,为电池热管理系统提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Self-Thermoregulating Polymer Electrolytes Enabling Intrinsic Safety in High-Energy Lithium Metal Batteries

Self-Thermoregulating Polymer Electrolytes Enabling Intrinsic Safety in High-Energy Lithium Metal Batteries

The pursuit of safe lithium metal batteries (LMBs) with ultrahigh energy density is fundamentally challenged by thermal runaway risks. This study proposes a thermal management strategy through the rational design of a multifunctional gel polymer electrolyte (PPW@GPE). By engineering phase change materials (paraffin wax) within flame-retardant PPBES copolymer matrices via coaxial electrospinning, a self-regulating separator with a dual-phase thermal response is constructed. Subsequent in situ polymerization immobilizes liquid electrolytes into a 3D crosslinked network, achieving simultaneous temperature modulation and ionic conduction optimization. The electrolyte can achieve a uniform hotspot, improve the electrochemical performance and safety of the battery, restrain hotspots, and mitigate temperature rise. In addition, PPW@GPE has excellent flame retardant properties and effectively forms the stabilized carbon layer at high temperatures, effectively protecting battery safety. This Li/PPW@GPE/LFP cell has excellent cycling performance, maintaining 500 stable cycles at 0.2C with only 0.0596% degradation per cycle. In addition, the fluorine-containing monomer helps to form a stable SEI layer and inhibits the growth of lithium dendrites. Through intelligent detection and Comsol simulation, the safety effectiveness of the battery under localized hot spots and external penetration nailing conditions is verified, which provides a new idea for the battery thermal management system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信