Zi-Yin Chen, Fang-Zhou Gao, Hong Bai, Min Zhang, Liang-Ying He, You-Sheng Liu, Guang-Guo Ying
{"title":"空气中抗生素耐药性的关键贡献和风险:总悬浮颗粒还是沉降尘埃?","authors":"Zi-Yin Chen, Fang-Zhou Gao, Hong Bai, Min Zhang, Liang-Ying He, You-Sheng Liu, Guang-Guo Ying","doi":"10.1021/acs.est.4c11038","DOIUrl":null,"url":null,"abstract":"The atmosphere is an important environmental medium in spreading antimicrobial resistance (AMR) in animal farming systems, yet the exposure risks associated with airborne pathways remain underexplored. This study employed metagenomic sequencing to investigate the airborne transmission of AMR in chicken farms (i.e., chicken feces, total suspended particles (TSP), and dust) and its exposure risks on the gut and nasal cavities of workers, office staff, and nearby villagers. Results revealed that TSP exhibited greater abundance, diversity, and transfer potential of antibiotic resistance genes (ARGs) compared to dust. The abundance of airborne resistome decreased with distance from the chicken house, and ARGs were estimated to spread up to 9.48 km within 1 h. While the gut resistome of workers and villagers showed limited differences, emerging <i>tet(X)</i> variants and high-risk <i>dfrA</i> remain future concerns. More nasal resistome was attributable to TSP compared to dust. Workers faced significantly higher inhalable exposures to antibiotic-resistant bacteria (ARB) and human pathogenic antibiotic-resistant bacteria (HPARB), exceeding those of office staff and villagers by an order of magnitude. We also compiled lists of high-risk and potential-risk airborne ARGs to inform monitoring. These findings highlight the need for regular air disinfection in animal farms and better protective measures for workers.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"34 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Key Contribution and Risk of Airborne Antibiotic Resistance: Total Suspended Particles or Settled Dust?\",\"authors\":\"Zi-Yin Chen, Fang-Zhou Gao, Hong Bai, Min Zhang, Liang-Ying He, You-Sheng Liu, Guang-Guo Ying\",\"doi\":\"10.1021/acs.est.4c11038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The atmosphere is an important environmental medium in spreading antimicrobial resistance (AMR) in animal farming systems, yet the exposure risks associated with airborne pathways remain underexplored. This study employed metagenomic sequencing to investigate the airborne transmission of AMR in chicken farms (i.e., chicken feces, total suspended particles (TSP), and dust) and its exposure risks on the gut and nasal cavities of workers, office staff, and nearby villagers. Results revealed that TSP exhibited greater abundance, diversity, and transfer potential of antibiotic resistance genes (ARGs) compared to dust. The abundance of airborne resistome decreased with distance from the chicken house, and ARGs were estimated to spread up to 9.48 km within 1 h. While the gut resistome of workers and villagers showed limited differences, emerging <i>tet(X)</i> variants and high-risk <i>dfrA</i> remain future concerns. More nasal resistome was attributable to TSP compared to dust. Workers faced significantly higher inhalable exposures to antibiotic-resistant bacteria (ARB) and human pathogenic antibiotic-resistant bacteria (HPARB), exceeding those of office staff and villagers by an order of magnitude. We also compiled lists of high-risk and potential-risk airborne ARGs to inform monitoring. These findings highlight the need for regular air disinfection in animal farms and better protective measures for workers.\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.est.4c11038\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c11038","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Key Contribution and Risk of Airborne Antibiotic Resistance: Total Suspended Particles or Settled Dust?
The atmosphere is an important environmental medium in spreading antimicrobial resistance (AMR) in animal farming systems, yet the exposure risks associated with airborne pathways remain underexplored. This study employed metagenomic sequencing to investigate the airborne transmission of AMR in chicken farms (i.e., chicken feces, total suspended particles (TSP), and dust) and its exposure risks on the gut and nasal cavities of workers, office staff, and nearby villagers. Results revealed that TSP exhibited greater abundance, diversity, and transfer potential of antibiotic resistance genes (ARGs) compared to dust. The abundance of airborne resistome decreased with distance from the chicken house, and ARGs were estimated to spread up to 9.48 km within 1 h. While the gut resistome of workers and villagers showed limited differences, emerging tet(X) variants and high-risk dfrA remain future concerns. More nasal resistome was attributable to TSP compared to dust. Workers faced significantly higher inhalable exposures to antibiotic-resistant bacteria (ARB) and human pathogenic antibiotic-resistant bacteria (HPARB), exceeding those of office staff and villagers by an order of magnitude. We also compiled lists of high-risk and potential-risk airborne ARGs to inform monitoring. These findings highlight the need for regular air disinfection in animal farms and better protective measures for workers.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.