{"title":"真菌是响应蓝藻有害藻华的湖泊微生物群的关键组成部分","authors":"Ze Zhao, Han Gao, Yuyi Yang, Ye Deng, Feng Ju","doi":"10.1021/acs.est.4c09164","DOIUrl":null,"url":null,"abstract":"Cyanobacterial Harmful Algal Blooms (CyanoHABs) pose a growing threat to lake ecosystems. While microbial communities constitute the resilient power of lake ecosystems to CyanoHAB disturbances, the role of fungi remains underexplored. Here, the dynamics of size-fractionated fungal and associated bacterial communities were tracked across the peak and decline stages of a CyanoHAB event in shallow subtropical Lake Taihu. The results revealed that the composition of fungal and bacterial communities in separated size fractions varied between bloom stages, with enrichment patterns likely influenced by their reliance on algal-derived nutrients. Null model-based analysis revealed a shift in fungal community assembly, from dominance by dispersal limitation (44%) and drift (30%) at the peak stage to increased homogeneous selection (44%) at the early decline stage, whereas bacterial communities remained predominantly shaped by stochastic processes, highlighting their distinct responses to cyanobacterial biomass decomposition. Comparative topological analysis of microbial co-occurrence networks showed strengthened cross-kingdom fungi-bacteria interactions as the bloom declined, especially within decomposing cyanobacterial colonies, facilitating nutrient cycling and accelerating cyanobacterial biomass removal. These findings led to a conceptual model proposing fungi as critical members of the freshwater microbiome in eutrophic lakes, driving biogeochemical cycling and potentially contributing to the resilience of the lake ecosystem against CyanoHABs.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"58 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fungi as a Critical Component of Lake Microbiota in Response to Cyanobacterial Harmful Algal Blooms\",\"authors\":\"Ze Zhao, Han Gao, Yuyi Yang, Ye Deng, Feng Ju\",\"doi\":\"10.1021/acs.est.4c09164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyanobacterial Harmful Algal Blooms (CyanoHABs) pose a growing threat to lake ecosystems. While microbial communities constitute the resilient power of lake ecosystems to CyanoHAB disturbances, the role of fungi remains underexplored. Here, the dynamics of size-fractionated fungal and associated bacterial communities were tracked across the peak and decline stages of a CyanoHAB event in shallow subtropical Lake Taihu. The results revealed that the composition of fungal and bacterial communities in separated size fractions varied between bloom stages, with enrichment patterns likely influenced by their reliance on algal-derived nutrients. Null model-based analysis revealed a shift in fungal community assembly, from dominance by dispersal limitation (44%) and drift (30%) at the peak stage to increased homogeneous selection (44%) at the early decline stage, whereas bacterial communities remained predominantly shaped by stochastic processes, highlighting their distinct responses to cyanobacterial biomass decomposition. Comparative topological analysis of microbial co-occurrence networks showed strengthened cross-kingdom fungi-bacteria interactions as the bloom declined, especially within decomposing cyanobacterial colonies, facilitating nutrient cycling and accelerating cyanobacterial biomass removal. These findings led to a conceptual model proposing fungi as critical members of the freshwater microbiome in eutrophic lakes, driving biogeochemical cycling and potentially contributing to the resilience of the lake ecosystem against CyanoHABs.\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.est.4c09164\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c09164","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Fungi as a Critical Component of Lake Microbiota in Response to Cyanobacterial Harmful Algal Blooms
Cyanobacterial Harmful Algal Blooms (CyanoHABs) pose a growing threat to lake ecosystems. While microbial communities constitute the resilient power of lake ecosystems to CyanoHAB disturbances, the role of fungi remains underexplored. Here, the dynamics of size-fractionated fungal and associated bacterial communities were tracked across the peak and decline stages of a CyanoHAB event in shallow subtropical Lake Taihu. The results revealed that the composition of fungal and bacterial communities in separated size fractions varied between bloom stages, with enrichment patterns likely influenced by their reliance on algal-derived nutrients. Null model-based analysis revealed a shift in fungal community assembly, from dominance by dispersal limitation (44%) and drift (30%) at the peak stage to increased homogeneous selection (44%) at the early decline stage, whereas bacterial communities remained predominantly shaped by stochastic processes, highlighting their distinct responses to cyanobacterial biomass decomposition. Comparative topological analysis of microbial co-occurrence networks showed strengthened cross-kingdom fungi-bacteria interactions as the bloom declined, especially within decomposing cyanobacterial colonies, facilitating nutrient cycling and accelerating cyanobacterial biomass removal. These findings led to a conceptual model proposing fungi as critical members of the freshwater microbiome in eutrophic lakes, driving biogeochemical cycling and potentially contributing to the resilience of the lake ecosystem against CyanoHABs.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.