GraftIQ:融合临床洞察的混合多类神经网络,用于肝移植受者的多结局预测

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Divya Sharma, Neta Gotlieb, Daljeet Chahal, Joseph C. Ahn, Bastian Engel, Richard Taubert, Eunice Tan, Lau Kai Yun, Sara Naimimohasses, Ankit Ray, Yoojin Han, Sara Gehlaut, Maryam Shojaee, Surabie Sivanendran, Maryam Naghibzadeh, Amirhossein Azhie, Sareh Keshavarzi, Kai Duan, Leslie Lilly, Nazia Selzner, Cynthia Tsien, Elmar Jaeckel, Wei Xu, Mamatha Bhat
{"title":"GraftIQ:融合临床洞察的混合多类神经网络,用于肝移植受者的多结局预测","authors":"Divya Sharma, Neta Gotlieb, Daljeet Chahal, Joseph C. Ahn, Bastian Engel, Richard Taubert, Eunice Tan, Lau Kai Yun, Sara Naimimohasses, Ankit Ray, Yoojin Han, Sara Gehlaut, Maryam Shojaee, Surabie Sivanendran, Maryam Naghibzadeh, Amirhossein Azhie, Sareh Keshavarzi, Kai Duan, Leslie Lilly, Nazia Selzner, Cynthia Tsien, Elmar Jaeckel, Wei Xu, Mamatha Bhat","doi":"10.1038/s41467-025-59610-8","DOIUrl":null,"url":null,"abstract":"<p>Liver transplant recipients (LTRs) are at risk of graft injury, leading to cirrhosis and reduced survival. Liver biopsy, the diagnostic gold standard, is invasive and risky. We developed a hybrid multi-class neural network (NN) model, ‘GraftIQ,’ integrating clinician expertise for non-invasive graft pathology diagnosis. Biopsies from LTRs (1992–2020) were classified into six categories using demographic, clinical, and lab data from 30 days pre-biopsy. The dataset (5217 biopsies) was split 70/30 for training/testing, with external validation at Mayo Clinic, Hannover Medical School, and NUHS Singapore. Bayesian fusion was used to combine clinician-derived probabilities with NN predictions, improving performance. Here we show that GraftIQ (MulticlassNN+clinical insight) achieved an AUC of 0.902 (95% CI:0.884–0.919), up from 0.885 with NN alone. Internal and external validation demonstrated 10–16% higher AUC than conventional ML models. GraftIQ demonstrates high accuracy in identifying graft etiologies and offers a valuable clinical decision support tool for LTRs.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"36 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GraftIQ: Hybrid multi-class neural network integrating clinical insight for multi-outcome prediction in liver transplant recipients\",\"authors\":\"Divya Sharma, Neta Gotlieb, Daljeet Chahal, Joseph C. Ahn, Bastian Engel, Richard Taubert, Eunice Tan, Lau Kai Yun, Sara Naimimohasses, Ankit Ray, Yoojin Han, Sara Gehlaut, Maryam Shojaee, Surabie Sivanendran, Maryam Naghibzadeh, Amirhossein Azhie, Sareh Keshavarzi, Kai Duan, Leslie Lilly, Nazia Selzner, Cynthia Tsien, Elmar Jaeckel, Wei Xu, Mamatha Bhat\",\"doi\":\"10.1038/s41467-025-59610-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Liver transplant recipients (LTRs) are at risk of graft injury, leading to cirrhosis and reduced survival. Liver biopsy, the diagnostic gold standard, is invasive and risky. We developed a hybrid multi-class neural network (NN) model, ‘GraftIQ,’ integrating clinician expertise for non-invasive graft pathology diagnosis. Biopsies from LTRs (1992–2020) were classified into six categories using demographic, clinical, and lab data from 30 days pre-biopsy. The dataset (5217 biopsies) was split 70/30 for training/testing, with external validation at Mayo Clinic, Hannover Medical School, and NUHS Singapore. Bayesian fusion was used to combine clinician-derived probabilities with NN predictions, improving performance. Here we show that GraftIQ (MulticlassNN+clinical insight) achieved an AUC of 0.902 (95% CI:0.884–0.919), up from 0.885 with NN alone. Internal and external validation demonstrated 10–16% higher AUC than conventional ML models. GraftIQ demonstrates high accuracy in identifying graft etiologies and offers a valuable clinical decision support tool for LTRs.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-59610-8\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59610-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

肝移植受者(LTRs)存在移植物损伤的风险,导致肝硬化和生存率降低。肝活检是诊断的金标准,是侵入性的和有风险的。我们开发了一种混合多类神经网络(NN)模型“GraftIQ”,整合了临床医生的专业知识,用于非侵入性移植物病理诊断。根据活检前30天的人口统计学、临床和实验室数据,将ltr(1992-2020)活检分为六类。数据集(5217份活检)分成70/30进行培训/测试,并在梅奥诊所、汉诺威医学院和新加坡国立卫生研究院进行外部验证。贝叶斯融合用于将临床医生得出的概率与神经网络预测相结合,从而提高了性能。这里我们显示,GraftIQ (MulticlassNN+临床洞察)的AUC为0.902 (95% CI: 0.884-0.919),高于单独使用NN的0.885。内部和外部验证表明,AUC比传统ML模型高10-16%。GraftIQ在确定移植物病因方面具有很高的准确性,为ltr提供了有价值的临床决策支持工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

GraftIQ: Hybrid multi-class neural network integrating clinical insight for multi-outcome prediction in liver transplant recipients

GraftIQ: Hybrid multi-class neural network integrating clinical insight for multi-outcome prediction in liver transplant recipients

Liver transplant recipients (LTRs) are at risk of graft injury, leading to cirrhosis and reduced survival. Liver biopsy, the diagnostic gold standard, is invasive and risky. We developed a hybrid multi-class neural network (NN) model, ‘GraftIQ,’ integrating clinician expertise for non-invasive graft pathology diagnosis. Biopsies from LTRs (1992–2020) were classified into six categories using demographic, clinical, and lab data from 30 days pre-biopsy. The dataset (5217 biopsies) was split 70/30 for training/testing, with external validation at Mayo Clinic, Hannover Medical School, and NUHS Singapore. Bayesian fusion was used to combine clinician-derived probabilities with NN predictions, improving performance. Here we show that GraftIQ (MulticlassNN+clinical insight) achieved an AUC of 0.902 (95% CI:0.884–0.919), up from 0.885 with NN alone. Internal and external validation demonstrated 10–16% higher AUC than conventional ML models. GraftIQ demonstrates high accuracy in identifying graft etiologies and offers a valuable clinical decision support tool for LTRs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信