Woosik Min, Seokhyun Lee, Juncheol Hwang, Sangho Yoon, Duho Kim
{"title":"打破结构对称以促进快速反应动力学","authors":"Woosik Min, Seokhyun Lee, Juncheol Hwang, Sangho Yoon, Duho Kim","doi":"10.1039/d5ta02769a","DOIUrl":null,"url":null,"abstract":"Breaking the intrinsic symmetry in crystal structures has emerged as a powerful strategy to enhance electrochemical reaction kinetics in advanced battery materials. In this study, we systematically investigate how introducing larger heteroatoms (e.g., Se, Te) into a cubic host lattice disrupts its symmetry, thereby creating new pathways for ionic transport. By expanding and splitting bond lengths, doping weakens the local bonding environment and reduces chemical hardness, which in turn lowers the energy barriers for (de)lithiation and accelerates phase-transition kinetics. Furthermore, Li kinetic calculations reveal that the resultant lattice distortions give rise to multiple diffusion routes, including newly formed channels with notably lower migration barriers. These findings underscore the critical role of structural asymmetry in improving charging rates and mitigating voltage hysteresis. Overall, this work highlights symmetry breaking as a promising design concept for developing high-performance battery materials, offering a pathway to faster Li-ion transport.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"153 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breaking structural symmetry to facilitate fast reaction kinetics\",\"authors\":\"Woosik Min, Seokhyun Lee, Juncheol Hwang, Sangho Yoon, Duho Kim\",\"doi\":\"10.1039/d5ta02769a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breaking the intrinsic symmetry in crystal structures has emerged as a powerful strategy to enhance electrochemical reaction kinetics in advanced battery materials. In this study, we systematically investigate how introducing larger heteroatoms (e.g., Se, Te) into a cubic host lattice disrupts its symmetry, thereby creating new pathways for ionic transport. By expanding and splitting bond lengths, doping weakens the local bonding environment and reduces chemical hardness, which in turn lowers the energy barriers for (de)lithiation and accelerates phase-transition kinetics. Furthermore, Li kinetic calculations reveal that the resultant lattice distortions give rise to multiple diffusion routes, including newly formed channels with notably lower migration barriers. These findings underscore the critical role of structural asymmetry in improving charging rates and mitigating voltage hysteresis. Overall, this work highlights symmetry breaking as a promising design concept for developing high-performance battery materials, offering a pathway to faster Li-ion transport.\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\"153 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5ta02769a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5ta02769a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Breaking structural symmetry to facilitate fast reaction kinetics
Breaking the intrinsic symmetry in crystal structures has emerged as a powerful strategy to enhance electrochemical reaction kinetics in advanced battery materials. In this study, we systematically investigate how introducing larger heteroatoms (e.g., Se, Te) into a cubic host lattice disrupts its symmetry, thereby creating new pathways for ionic transport. By expanding and splitting bond lengths, doping weakens the local bonding environment and reduces chemical hardness, which in turn lowers the energy barriers for (de)lithiation and accelerates phase-transition kinetics. Furthermore, Li kinetic calculations reveal that the resultant lattice distortions give rise to multiple diffusion routes, including newly formed channels with notably lower migration barriers. These findings underscore the critical role of structural asymmetry in improving charging rates and mitigating voltage hysteresis. Overall, this work highlights symmetry breaking as a promising design concept for developing high-performance battery materials, offering a pathway to faster Li-ion transport.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.