Hu-Hua He, Mao-Jun Yan, Chun-Sheng An, Cheng-Rong Deng
{"title":"由D1D1、D1D2*和D2*D2*组成的类氢分子","authors":"Hu-Hua He, Mao-Jun Yan, Chun-Sheng An, Cheng-Rong Deng","doi":"10.1103/physrevd.111.094038","DOIUrl":null,"url":null,"abstract":"We systematically explore the S-wave D</a:mi>1</a:mn></a:msub>D</a:mi>1</a:mn></a:msub></a:math>, <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:msub><c:mi>D</c:mi><c:mn>1</c:mn></c:msub><c:msubsup><c:mi>D</c:mi><c:mn>2</c:mn><c:mo>*</c:mo></c:msubsup></c:math> and <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:msubsup><e:mi>D</e:mi><e:mn>2</e:mn><e:mo>*</e:mo></e:msubsup><e:msubsup><e:mi>D</e:mi><e:mn>2</e:mn><e:mo>*</e:mo></e:msubsup></e:math> states with various isospin-spin-orbit (<g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mi>I</g:mi><g:mi>S</g:mi><g:mi>L</g:mi></g:math>) configurations in the quark model. We propose nine stable dimeson states with the <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mi>I</i:mi><i:mi>S</i:mi><i:mi>L</i:mi></i:math> configurations, <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mi>I</k:mi><k:mi>S</k:mi><k:mi>L</k:mi><k:mo>=</k:mo><k:mn>001</k:mn></k:math>, 010, 012, 100, 102, 110, 112, 120, and 122, against dissociation into their constituent mesons. Those bound states are hydrogenlike molecular states, where the two subclusters are moderately overlapped and the QCD covalent bond is formed due to the delocalization of light quarks. The QCD covalent bond serves as the primary binding mechanism in the bound states with <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mi>I</m:mi><m:mo>=</m:mo><m:mn>1</m:mn></m:math>. However, the exchange of <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:mi>π</o:mi></o:math> and <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mi>σ</q:mi></q:math> mesons plays a pivotal role in the bound states with <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mi>I</s:mi><s:mo>=</s:mo><s:mn>0</s:mn></s:math>. The coupled-channel effect is essential in the formation of the bound states with <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mi>I</u:mi><u:mi>S</u:mi><u:mi>L</u:mi><u:mo>=</u:mo><u:mn>001</u:mn></u:math>, 010, 012, 100, and 102. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"5 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogenlike molecules composed of D1D1 , D1D2* , and D2*D2*\",\"authors\":\"Hu-Hua He, Mao-Jun Yan, Chun-Sheng An, Cheng-Rong Deng\",\"doi\":\"10.1103/physrevd.111.094038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We systematically explore the S-wave D</a:mi>1</a:mn></a:msub>D</a:mi>1</a:mn></a:msub></a:math>, <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:msub><c:mi>D</c:mi><c:mn>1</c:mn></c:msub><c:msubsup><c:mi>D</c:mi><c:mn>2</c:mn><c:mo>*</c:mo></c:msubsup></c:math> and <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:msubsup><e:mi>D</e:mi><e:mn>2</e:mn><e:mo>*</e:mo></e:msubsup><e:msubsup><e:mi>D</e:mi><e:mn>2</e:mn><e:mo>*</e:mo></e:msubsup></e:math> states with various isospin-spin-orbit (<g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:mi>I</g:mi><g:mi>S</g:mi><g:mi>L</g:mi></g:math>) configurations in the quark model. We propose nine stable dimeson states with the <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:mi>I</i:mi><i:mi>S</i:mi><i:mi>L</i:mi></i:math> configurations, <k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><k:mi>I</k:mi><k:mi>S</k:mi><k:mi>L</k:mi><k:mo>=</k:mo><k:mn>001</k:mn></k:math>, 010, 012, 100, 102, 110, 112, 120, and 122, against dissociation into their constituent mesons. Those bound states are hydrogenlike molecular states, where the two subclusters are moderately overlapped and the QCD covalent bond is formed due to the delocalization of light quarks. The QCD covalent bond serves as the primary binding mechanism in the bound states with <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:mi>I</m:mi><m:mo>=</m:mo><m:mn>1</m:mn></m:math>. However, the exchange of <o:math xmlns:o=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><o:mi>π</o:mi></o:math> and <q:math xmlns:q=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><q:mi>σ</q:mi></q:math> mesons plays a pivotal role in the bound states with <s:math xmlns:s=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><s:mi>I</s:mi><s:mo>=</s:mo><s:mn>0</s:mn></s:math>. The coupled-channel effect is essential in the formation of the bound states with <u:math xmlns:u=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><u:mi>I</u:mi><u:mi>S</u:mi><u:mi>L</u:mi><u:mo>=</u:mo><u:mn>001</u:mn></u:math>, 010, 012, 100, and 102. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.094038\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.094038","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Hydrogenlike molecules composed of D1D1 , D1D2* , and D2*D2*
We systematically explore the S-wave D1D1, D1D2* and D2*D2* states with various isospin-spin-orbit (ISL) configurations in the quark model. We propose nine stable dimeson states with the ISL configurations, ISL=001, 010, 012, 100, 102, 110, 112, 120, and 122, against dissociation into their constituent mesons. Those bound states are hydrogenlike molecular states, where the two subclusters are moderately overlapped and the QCD covalent bond is formed due to the delocalization of light quarks. The QCD covalent bond serves as the primary binding mechanism in the bound states with I=1. However, the exchange of π and σ mesons plays a pivotal role in the bound states with I=0. The coupled-channel effect is essential in the formation of the bound states with ISL=001, 010, 012, 100, and 102. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.