通过硬化和高Li+通量夹层实现稳定的锂阳极

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shaozhen Huang, Kun Li, An Wang, Siru He, Zhangdi Xie, Huimiao Li, Zhibin Wu, Yuejiao Chen, Libao Chen
{"title":"通过硬化和高Li+通量夹层实现稳定的锂阳极","authors":"Shaozhen Huang, Kun Li, An Wang, Siru He, Zhangdi Xie, Huimiao Li, Zhibin Wu, Yuejiao Chen, Libao Chen","doi":"10.1021/acs.nanolett.5c01606","DOIUrl":null,"url":null,"abstract":"The commercial use of lithium metal batteries is greatly limited by dendrite formation and slow Li<sup>+</sup> transport at the anode–electrolyte interface. Herein, the constructed high-modulus polymer interlayer suppressed the Li dendrite formation, leading to dense deposition and enhanced Li<sup>+</sup> transport. Meanwhile, this formed robust organic solid–electrolyte interphase inhibited the side reactions occurring at the anode–electrolyte interface while promoting a high Li<sup>+</sup> flux. By constructing the polymer interlayer, the Li@P3DDT||Li@P3DDT symmetric cells demonstrated an impressive stability lifespan of over 3400 h at 1 mA/cm<sup>2</sup> and 1 mAh/cm<sup>2</sup>. The LFP||Li@P3DDT full cells exhibit a remarkable capacity retention of 85.0% over 300 cycles at 4 C. Furthermore, the 50 μm Li@P3DDT||LiCoO<sub>2</sub> pouch cell with 380 Wh kg<sup>–1</sup> maintained over 99.9% retention of capacity over 60 cycles at 0.5 C. The research paves the way for the advancement of stable lithium anodes.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"9 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable Lithium Anodes Enabled by the Hardening and High Li+ Flux Interlayer\",\"authors\":\"Shaozhen Huang, Kun Li, An Wang, Siru He, Zhangdi Xie, Huimiao Li, Zhibin Wu, Yuejiao Chen, Libao Chen\",\"doi\":\"10.1021/acs.nanolett.5c01606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The commercial use of lithium metal batteries is greatly limited by dendrite formation and slow Li<sup>+</sup> transport at the anode–electrolyte interface. Herein, the constructed high-modulus polymer interlayer suppressed the Li dendrite formation, leading to dense deposition and enhanced Li<sup>+</sup> transport. Meanwhile, this formed robust organic solid–electrolyte interphase inhibited the side reactions occurring at the anode–electrolyte interface while promoting a high Li<sup>+</sup> flux. By constructing the polymer interlayer, the Li@P3DDT||Li@P3DDT symmetric cells demonstrated an impressive stability lifespan of over 3400 h at 1 mA/cm<sup>2</sup> and 1 mAh/cm<sup>2</sup>. The LFP||Li@P3DDT full cells exhibit a remarkable capacity retention of 85.0% over 300 cycles at 4 C. Furthermore, the 50 μm Li@P3DDT||LiCoO<sub>2</sub> pouch cell with 380 Wh kg<sup>–1</sup> maintained over 99.9% retention of capacity over 60 cycles at 0.5 C. The research paves the way for the advancement of stable lithium anodes.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.5c01606\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c01606","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锂金属电池的商业应用很大程度上受到枝晶形成和锂离子在阳极-电解质界面传输缓慢的限制。其中,构建的高模量聚合物间层抑制了Li枝晶的形成,导致密集沉积和增强Li+的运输。同时,这种形成的坚固的有机固体-电解质界面抑制了在阳极-电解质界面发生的副反应,同时促进了高Li+通量。通过构建聚合物中间层,Li@P3DDT||Li@P3DDT对称电池在1 mA/cm2和1 mAh/cm2下的稳定寿命超过3400小时。LFP||Li@P3DDT全电池在4℃下300次循环的容量保持率为85.0%,而380 Wh kg-1的50 μm Li@P3DDT||LiCoO2袋电池在0.5℃下60次循环的容量保持率超过99.9%。研究为稳定锂阳极的发展铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stable Lithium Anodes Enabled by the Hardening and High Li+ Flux Interlayer

Stable Lithium Anodes Enabled by the Hardening and High Li+ Flux Interlayer
The commercial use of lithium metal batteries is greatly limited by dendrite formation and slow Li+ transport at the anode–electrolyte interface. Herein, the constructed high-modulus polymer interlayer suppressed the Li dendrite formation, leading to dense deposition and enhanced Li+ transport. Meanwhile, this formed robust organic solid–electrolyte interphase inhibited the side reactions occurring at the anode–electrolyte interface while promoting a high Li+ flux. By constructing the polymer interlayer, the Li@P3DDT||Li@P3DDT symmetric cells demonstrated an impressive stability lifespan of over 3400 h at 1 mA/cm2 and 1 mAh/cm2. The LFP||Li@P3DDT full cells exhibit a remarkable capacity retention of 85.0% over 300 cycles at 4 C. Furthermore, the 50 μm Li@P3DDT||LiCoO2 pouch cell with 380 Wh kg–1 maintained over 99.9% retention of capacity over 60 cycles at 0.5 C. The research paves the way for the advancement of stable lithium anodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信