Jianping Yuan, Shiduo Wang, Haiqiao Wei, Gequn Shu, Jiaying Pan
{"title":"水和甲醇中体积氢纳米泡稳定性的分子动力学研究","authors":"Jianping Yuan, Shiduo Wang, Haiqiao Wei, Gequn Shu, Jiaying Pan","doi":"10.1021/acs.langmuir.5c01659","DOIUrl":null,"url":null,"abstract":"Bulk hydrogen nanobubbles (NBs) play a key role in hydrogen generation and utilization. However, their stabilization mechanisms in different solvents remain not fully understood. This study employs molecular dynamics simulations to investigate the stability and evolution of bulk hydrogen NBs in water and methanol, with experimental measurements providing validation. The results show that NBs in methanol tend to dissolve at lower initial gas densities, indicating a lower stability compared to those in water. Under stable conditions, approximately 80% of hydrogen molecules remain inside NBs in water, while only about 40% remain in methanol, consistent with methanol’s higher hydrogen solubility observed experimentally. Further analysis reveals that hydrogen NBs in water exhibit a thinner gas–liquid interface as well as lower internal pressure and gas density, mainly related to its lower hydrogen solubility. Utilizing mechanical equilibrium and critical radius theory, we identify the hydrogen concentration thresholds for NB stability to be 0.96–1.44 mol/L in water and 2.69–2.88 mol/L in methanol. Additionally, hydrogen molecules in methanol exhibit more vigorous motion, stronger gas–liquid interactions, and a weaker hydrogen bond network. This study provides molecular-level insights into the stabilization of bulk hydrogen NBs in different solvents.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"23 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Dynamics Insights into the Stability of Bulk Hydrogen Nanobubbles in Water and Methanol\",\"authors\":\"Jianping Yuan, Shiduo Wang, Haiqiao Wei, Gequn Shu, Jiaying Pan\",\"doi\":\"10.1021/acs.langmuir.5c01659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bulk hydrogen nanobubbles (NBs) play a key role in hydrogen generation and utilization. However, their stabilization mechanisms in different solvents remain not fully understood. This study employs molecular dynamics simulations to investigate the stability and evolution of bulk hydrogen NBs in water and methanol, with experimental measurements providing validation. The results show that NBs in methanol tend to dissolve at lower initial gas densities, indicating a lower stability compared to those in water. Under stable conditions, approximately 80% of hydrogen molecules remain inside NBs in water, while only about 40% remain in methanol, consistent with methanol’s higher hydrogen solubility observed experimentally. Further analysis reveals that hydrogen NBs in water exhibit a thinner gas–liquid interface as well as lower internal pressure and gas density, mainly related to its lower hydrogen solubility. Utilizing mechanical equilibrium and critical radius theory, we identify the hydrogen concentration thresholds for NB stability to be 0.96–1.44 mol/L in water and 2.69–2.88 mol/L in methanol. Additionally, hydrogen molecules in methanol exhibit more vigorous motion, stronger gas–liquid interactions, and a weaker hydrogen bond network. This study provides molecular-level insights into the stabilization of bulk hydrogen NBs in different solvents.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.5c01659\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.5c01659","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Molecular Dynamics Insights into the Stability of Bulk Hydrogen Nanobubbles in Water and Methanol
Bulk hydrogen nanobubbles (NBs) play a key role in hydrogen generation and utilization. However, their stabilization mechanisms in different solvents remain not fully understood. This study employs molecular dynamics simulations to investigate the stability and evolution of bulk hydrogen NBs in water and methanol, with experimental measurements providing validation. The results show that NBs in methanol tend to dissolve at lower initial gas densities, indicating a lower stability compared to those in water. Under stable conditions, approximately 80% of hydrogen molecules remain inside NBs in water, while only about 40% remain in methanol, consistent with methanol’s higher hydrogen solubility observed experimentally. Further analysis reveals that hydrogen NBs in water exhibit a thinner gas–liquid interface as well as lower internal pressure and gas density, mainly related to its lower hydrogen solubility. Utilizing mechanical equilibrium and critical radius theory, we identify the hydrogen concentration thresholds for NB stability to be 0.96–1.44 mol/L in water and 2.69–2.88 mol/L in methanol. Additionally, hydrogen molecules in methanol exhibit more vigorous motion, stronger gas–liquid interactions, and a weaker hydrogen bond network. This study provides molecular-level insights into the stabilization of bulk hydrogen NBs in different solvents.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).