{"title":"揭示植物多倍体和微生物组的相互作用:对多倍体成功理解的意义","authors":"Tia‐Lynn Ashman","doi":"10.1111/nph.70226","DOIUrl":null,"url":null,"abstract":"SummaryPolyploidy plays a major role in diversification and speciation of almost all plants. Separately, the microbiome is recognized for its ubiquitous role in plant functioning. Despite the importance of both processes, we lack a synthetic picture of their reciprocal relationship. I forge this missing linkage by presenting the ways in which plant polyploidy can shape the microbiome and how the microbiome in turn can affect polyploid phenotype and fitness. I illustrate these interactions by drawing on the small, but compelling, set of comparisons of the plant–microbial community interaction with taxa representing different stages of the polyploid continuum and thereby shed light on how the advantages of polyploidy may be influenced by microbes. I use findings from a range of studies to build the case for plant–microbiome reciprocal interactions in both key pathways for polyploid persistence: overcoming their minority cytotype disadvantage and increasing competitive ability and/or niche shifts relative to diploids. I put forward how the microbiome likely plays a role in polyploid stress tolerance, abiotic niche breadth, range limits and coexistence. I conclude by identifying the research needed to test these hypotheses and how doing so could transform our understanding of polyploidy as a driver of plant ecology and evolution.","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"51 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncovering the reciprocal effects of plant polyploidy and the microbiome: implications for understanding of polyploid success\",\"authors\":\"Tia‐Lynn Ashman\",\"doi\":\"10.1111/nph.70226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SummaryPolyploidy plays a major role in diversification and speciation of almost all plants. Separately, the microbiome is recognized for its ubiquitous role in plant functioning. Despite the importance of both processes, we lack a synthetic picture of their reciprocal relationship. I forge this missing linkage by presenting the ways in which plant polyploidy can shape the microbiome and how the microbiome in turn can affect polyploid phenotype and fitness. I illustrate these interactions by drawing on the small, but compelling, set of comparisons of the plant–microbial community interaction with taxa representing different stages of the polyploid continuum and thereby shed light on how the advantages of polyploidy may be influenced by microbes. I use findings from a range of studies to build the case for plant–microbiome reciprocal interactions in both key pathways for polyploid persistence: overcoming their minority cytotype disadvantage and increasing competitive ability and/or niche shifts relative to diploids. I put forward how the microbiome likely plays a role in polyploid stress tolerance, abiotic niche breadth, range limits and coexistence. I conclude by identifying the research needed to test these hypotheses and how doing so could transform our understanding of polyploidy as a driver of plant ecology and evolution.\",\"PeriodicalId\":214,\"journal\":{\"name\":\"New Phytologist\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Phytologist\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/nph.70226\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.70226","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Uncovering the reciprocal effects of plant polyploidy and the microbiome: implications for understanding of polyploid success
SummaryPolyploidy plays a major role in diversification and speciation of almost all plants. Separately, the microbiome is recognized for its ubiquitous role in plant functioning. Despite the importance of both processes, we lack a synthetic picture of their reciprocal relationship. I forge this missing linkage by presenting the ways in which plant polyploidy can shape the microbiome and how the microbiome in turn can affect polyploid phenotype and fitness. I illustrate these interactions by drawing on the small, but compelling, set of comparisons of the plant–microbial community interaction with taxa representing different stages of the polyploid continuum and thereby shed light on how the advantages of polyploidy may be influenced by microbes. I use findings from a range of studies to build the case for plant–microbiome reciprocal interactions in both key pathways for polyploid persistence: overcoming their minority cytotype disadvantage and increasing competitive ability and/or niche shifts relative to diploids. I put forward how the microbiome likely plays a role in polyploid stress tolerance, abiotic niche breadth, range limits and coexistence. I conclude by identifying the research needed to test these hypotheses and how doing so could transform our understanding of polyploidy as a driver of plant ecology and evolution.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.