超低损耗慢光薄膜铌酸锂光调制器

IF 9.8 1区 物理与天体物理 Q1 OPTICS
Chenlei Li, Jianghao He, Ming Zhang, Yeyu Tong, Weixi Liu, Siyuan Wang, Lijia Song, Hongxuan Liu, Hengzhen Cao, Liu Liu, Yaocheng Shi, Daoxin Dai
{"title":"超低损耗慢光薄膜铌酸锂光调制器","authors":"Chenlei Li, Jianghao He, Ming Zhang, Yeyu Tong, Weixi Liu, Siyuan Wang, Lijia Song, Hongxuan Liu, Hengzhen Cao, Liu Liu, Yaocheng Shi, Daoxin Dai","doi":"10.1002/lpor.202401998","DOIUrl":null,"url":null,"abstract":"Electro‐optic modulators for next‐generation optical interconnects require low loss‐efficiency products (α<jats:italic>V</jats:italic><jats:sub>π</jats:sub>L), compact footprints, high modulation efficiency and broad bandwidths. Here it is proposed and demonstrated a low‐loss high‐efficiency thin‐film lithium niobate Mach–Zehnder modulator enabled by a novel ultralow‐loss slow‐light structure based on apodized gratings in cascade. The present loss‐engineered slow‐light structure achieves excess losses as low as 0.6 dB mm<jats:sup>−1</jats:sup> experimentally, which is tens of times lower than conventional slow‐light structures, and a high modulation bandwidth up to 320 GHz in theory is achieved with optimally‐designed capacitively‐loaded traveling‐wave electrodes. Experimentally, the fabricated slow‐light modulator with a 2.8‐mm‐long modulation region has an ultra‐low loss‐efficiency product αV<jats:sub>π</jats:sub>L of 7.4 V dB and a flat electro‐optic response up to 67 GHz, enabling 100‐Gbps on‐off keying with high ERs of 4.5 dB at a low driving voltage of 2<jats:italic>V</jats:italic><jats:sub>pp</jats:sub>, while 200‐Gbps PAM4 and 150‐Gbps PAM8 signals are also generated to show great promise for advanced modulation formats. In particular, it has also achieved the highest figure‐of‐merit (FOM = BR×(ER/<jats:italic>V</jats:italic><jats:sub>pp</jats:sub>)/(<jats:italic>V</jats:italic><jats:sub>π</jats:sub><jats:italic>L</jats:italic>)) of ≈182 Gbps∙(dB/V)/(V∙cm) for high‐speed optical modulation. The outstanding performance of the present slow‐light modulator shows great potential and paves the way for developing high‐speed optical interconnects for both data‐centers and high‐performance computing systems.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"9 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra‐Low‐Loss Slow‐Light Thin‐Film Lithium Niobate Optical Modulator\",\"authors\":\"Chenlei Li, Jianghao He, Ming Zhang, Yeyu Tong, Weixi Liu, Siyuan Wang, Lijia Song, Hongxuan Liu, Hengzhen Cao, Liu Liu, Yaocheng Shi, Daoxin Dai\",\"doi\":\"10.1002/lpor.202401998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electro‐optic modulators for next‐generation optical interconnects require low loss‐efficiency products (α<jats:italic>V</jats:italic><jats:sub>π</jats:sub>L), compact footprints, high modulation efficiency and broad bandwidths. Here it is proposed and demonstrated a low‐loss high‐efficiency thin‐film lithium niobate Mach–Zehnder modulator enabled by a novel ultralow‐loss slow‐light structure based on apodized gratings in cascade. The present loss‐engineered slow‐light structure achieves excess losses as low as 0.6 dB mm<jats:sup>−1</jats:sup> experimentally, which is tens of times lower than conventional slow‐light structures, and a high modulation bandwidth up to 320 GHz in theory is achieved with optimally‐designed capacitively‐loaded traveling‐wave electrodes. Experimentally, the fabricated slow‐light modulator with a 2.8‐mm‐long modulation region has an ultra‐low loss‐efficiency product αV<jats:sub>π</jats:sub>L of 7.4 V dB and a flat electro‐optic response up to 67 GHz, enabling 100‐Gbps on‐off keying with high ERs of 4.5 dB at a low driving voltage of 2<jats:italic>V</jats:italic><jats:sub>pp</jats:sub>, while 200‐Gbps PAM4 and 150‐Gbps PAM8 signals are also generated to show great promise for advanced modulation formats. In particular, it has also achieved the highest figure‐of‐merit (FOM = BR×(ER/<jats:italic>V</jats:italic><jats:sub>pp</jats:sub>)/(<jats:italic>V</jats:italic><jats:sub>π</jats:sub><jats:italic>L</jats:italic>)) of ≈182 Gbps∙(dB/V)/(V∙cm) for high‐speed optical modulation. The outstanding performance of the present slow‐light modulator shows great potential and paves the way for developing high‐speed optical interconnects for both data‐centers and high‐performance computing systems.\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/lpor.202401998\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202401998","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

用于下一代光互连的电光调制器需要低损耗效率产品(αVπL),占地面积小,调制效率高,带宽宽。本文提出并演示了一种低损耗、高效率的铌酸锂薄膜马赫-曾德尔调制器,该调制器是由一种新型的超低损耗、基于apodized光栅的级联慢光结构实现的。目前的损耗工程慢光结构在实验上实现了低至0.6 dB mm−1的过量损耗,比传统慢光结构低数十倍,并且通过优化设计的电容负载行波电极在理论上实现了高达320 GHz的高调制带宽。实验结果表明,该调制区域长2.8 mm的慢光调制器具有7.4 V dB的超低损耗效率产物αVπL和高达67 GHz的平坦电光响应,在2Vpp的低驱动电压下实现了4.5 dB的高er值和100 Gbps的开关键控,同时还产生了200 Gbps的PAM4和150 Gbps的PAM8信号,为先进的调制格式提供了广阔的前景。特别是,它还实现了高速光调制的最高品质因数(FOM = brx (ER/Vpp)/(Vπ l))≈182 Gbps∙(dB/V)/(V∙cm)。目前慢光调制器的优异性能显示出巨大的潜力,为数据中心和高性能计算系统的高速光互连的发展铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultra‐Low‐Loss Slow‐Light Thin‐Film Lithium Niobate Optical Modulator
Electro‐optic modulators for next‐generation optical interconnects require low loss‐efficiency products (αVπL), compact footprints, high modulation efficiency and broad bandwidths. Here it is proposed and demonstrated a low‐loss high‐efficiency thin‐film lithium niobate Mach–Zehnder modulator enabled by a novel ultralow‐loss slow‐light structure based on apodized gratings in cascade. The present loss‐engineered slow‐light structure achieves excess losses as low as 0.6 dB mm−1 experimentally, which is tens of times lower than conventional slow‐light structures, and a high modulation bandwidth up to 320 GHz in theory is achieved with optimally‐designed capacitively‐loaded traveling‐wave electrodes. Experimentally, the fabricated slow‐light modulator with a 2.8‐mm‐long modulation region has an ultra‐low loss‐efficiency product αVπL of 7.4 V dB and a flat electro‐optic response up to 67 GHz, enabling 100‐Gbps on‐off keying with high ERs of 4.5 dB at a low driving voltage of 2Vpp, while 200‐Gbps PAM4 and 150‐Gbps PAM8 signals are also generated to show great promise for advanced modulation formats. In particular, it has also achieved the highest figure‐of‐merit (FOM = BR×(ER/Vpp)/(VπL)) of ≈182 Gbps∙(dB/V)/(V∙cm) for high‐speed optical modulation. The outstanding performance of the present slow‐light modulator shows great potential and paves the way for developing high‐speed optical interconnects for both data‐centers and high‐performance computing systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信