Guillermo Currás-Lorenzo, Álvaro Navarrete, Javier Núñez-Bon, Margarida Pereira and Marcos Curty
{"title":"具有部分状态表征的量子密钥分发的数值安全性分析","authors":"Guillermo Currás-Lorenzo, Álvaro Navarrete, Javier Núñez-Bon, Margarida Pereira and Marcos Curty","doi":"10.1088/2058-9565/addae1","DOIUrl":null,"url":null,"abstract":"Numerical security proofs offer a versatile approach for evaluating the secret-key generation rate of quantum key distribution (QKD) protocols. However, existing methods typically require perfect source characterization, which is unrealistic in practice due to the presence of inevitable encoding imperfections and side channels. In this paper, we introduce a novel security proof technique based on semidefinite programming that can evaluate the secret-key rate for both prepare-and-measure and measurement-device-independent QKD protocols when only partial information about the emitted states is available, significantly improving the applicability and practical relevance compared to existing numerical techniques. We demonstrate that our method can outperform current analytical approaches addressing partial state characterization in terms of achievable secret-key rates, particularly for protocols with non-qubit encoding spaces. This represents a significant step towards bridging the gap between theoretical security proofs and practical QKD implementations.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"58 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical security analysis for quantum key distribution with partial state characterization\",\"authors\":\"Guillermo Currás-Lorenzo, Álvaro Navarrete, Javier Núñez-Bon, Margarida Pereira and Marcos Curty\",\"doi\":\"10.1088/2058-9565/addae1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerical security proofs offer a versatile approach for evaluating the secret-key generation rate of quantum key distribution (QKD) protocols. However, existing methods typically require perfect source characterization, which is unrealistic in practice due to the presence of inevitable encoding imperfections and side channels. In this paper, we introduce a novel security proof technique based on semidefinite programming that can evaluate the secret-key rate for both prepare-and-measure and measurement-device-independent QKD protocols when only partial information about the emitted states is available, significantly improving the applicability and practical relevance compared to existing numerical techniques. We demonstrate that our method can outperform current analytical approaches addressing partial state characterization in terms of achievable secret-key rates, particularly for protocols with non-qubit encoding spaces. This represents a significant step towards bridging the gap between theoretical security proofs and practical QKD implementations.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/addae1\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/addae1","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Numerical security analysis for quantum key distribution with partial state characterization
Numerical security proofs offer a versatile approach for evaluating the secret-key generation rate of quantum key distribution (QKD) protocols. However, existing methods typically require perfect source characterization, which is unrealistic in practice due to the presence of inevitable encoding imperfections and side channels. In this paper, we introduce a novel security proof technique based on semidefinite programming that can evaluate the secret-key rate for both prepare-and-measure and measurement-device-independent QKD protocols when only partial information about the emitted states is available, significantly improving the applicability and practical relevance compared to existing numerical techniques. We demonstrate that our method can outperform current analytical approaches addressing partial state characterization in terms of achievable secret-key rates, particularly for protocols with non-qubit encoding spaces. This represents a significant step towards bridging the gap between theoretical security proofs and practical QKD implementations.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.