Yeon Woo Nahm, Jae Seob Lee, Jae Hun Choi, Jung Sang Cho, Yun Chan Kang
{"title":"用于无枝晶锂金属电池的含SiOx嵌入分层多孔N掺杂碳纳米纤维的3D亲锂独立式主体","authors":"Yeon Woo Nahm, Jae Seob Lee, Jae Hun Choi, Jung Sang Cho, Yun Chan Kang","doi":"10.1002/smll.202504223","DOIUrl":null,"url":null,"abstract":"3D host materials are promising for Li‐metal anodes (LMAs) because of their adaptability to volume changes and large areas that prevent current localization, hindering dendritic Li formation. Herein, freestanding porous N‐doped carbon nanofibers (PCNFs) with uniformly distributed SiO<jats:italic><jats:sub>x</jats:sub></jats:italic> are synthesized by electrospinning and subsequent carbonization. In these composites, tunnel‐like, open channels are formed between the CNFs by removing polystyrene (PS) and the hollow N‐doped nanocages (HNC) generated from zeolitic imidazolate frameworks‐8 (ZIF‐8) during carbonization, providing sufficient space for Li deposition. Accompanying these structural advantages, the adequate electron conductivity and lithophilic properties derived from the conductive N‐doped CNFs and insulating SiO<jats:italic><jats:sub>x</jats:sub></jats:italic> confer optimized characteristics for uniform Li distribution. The coulombic efficiency exceeds 98% over 160 cycles in asymmetrical cells at a current density of 2.0 mA cm<jats:sup>−2</jats:sup>, with stable voltage hysteresis and an average overpotential of 25 mV for 1350 h in symmetrical tests. Full cells assembled with composite anodes predeposited with Li exhibited excellent capacity retention, delivering 141 mAh g<jats:sup>−1</jats:sup> at 2.0 C with LiNi<jats:sub>0.6</jats:sub>Co<jats:sub>0.2</jats:sub>Mn<jats:sub>0.2</jats:sub>O<jats:sub>2</jats:sub> (NCM622) cathodes. The results highlight that the optimized combination of conductive CNFs, HNCs, and insulating SiO<jats:italic><jats:sub>x</jats:sub></jats:italic> effectively enables uniform Li deposition, significantly enhancing cycling stability and Coulombic efficiency (CE) of LMAs.","PeriodicalId":228,"journal":{"name":"Small","volume":"35 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D Lithiophilic Freestanding Hosts with SiOx‐Embedded Hierarchical Porous N‐Doped Carbon Nanofibers for Dendrite‐Free Lithium Metal Batteries\",\"authors\":\"Yeon Woo Nahm, Jae Seob Lee, Jae Hun Choi, Jung Sang Cho, Yun Chan Kang\",\"doi\":\"10.1002/smll.202504223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D host materials are promising for Li‐metal anodes (LMAs) because of their adaptability to volume changes and large areas that prevent current localization, hindering dendritic Li formation. Herein, freestanding porous N‐doped carbon nanofibers (PCNFs) with uniformly distributed SiO<jats:italic><jats:sub>x</jats:sub></jats:italic> are synthesized by electrospinning and subsequent carbonization. In these composites, tunnel‐like, open channels are formed between the CNFs by removing polystyrene (PS) and the hollow N‐doped nanocages (HNC) generated from zeolitic imidazolate frameworks‐8 (ZIF‐8) during carbonization, providing sufficient space for Li deposition. Accompanying these structural advantages, the adequate electron conductivity and lithophilic properties derived from the conductive N‐doped CNFs and insulating SiO<jats:italic><jats:sub>x</jats:sub></jats:italic> confer optimized characteristics for uniform Li distribution. The coulombic efficiency exceeds 98% over 160 cycles in asymmetrical cells at a current density of 2.0 mA cm<jats:sup>−2</jats:sup>, with stable voltage hysteresis and an average overpotential of 25 mV for 1350 h in symmetrical tests. Full cells assembled with composite anodes predeposited with Li exhibited excellent capacity retention, delivering 141 mAh g<jats:sup>−1</jats:sup> at 2.0 C with LiNi<jats:sub>0.6</jats:sub>Co<jats:sub>0.2</jats:sub>Mn<jats:sub>0.2</jats:sub>O<jats:sub>2</jats:sub> (NCM622) cathodes. The results highlight that the optimized combination of conductive CNFs, HNCs, and insulating SiO<jats:italic><jats:sub>x</jats:sub></jats:italic> effectively enables uniform Li deposition, significantly enhancing cycling stability and Coulombic efficiency (CE) of LMAs.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202504223\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202504223","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
3D主体材料是锂金属阳极(lma)的理想材料,因为它们对体积变化的适应性和防止电流局部化的大面积,阻碍了树枝状锂的形成。本文采用静电纺丝和碳化法制备了具有均匀SiOx分布的独立多孔掺氮纳米碳纤维(PCNFs)。在这些复合材料中,通过去除碳化过程中聚苯乙烯(PS)和由沸石咪唑酸框架- 8 (ZIF - 8)产生的空心掺N纳米笼(HNC),在CNFs之间形成了隧道状的开放通道,为Li沉积提供了足够的空间。伴随着这些结构上的优势,由导电掺N的CNFs和绝缘SiOx获得的充足的电子导电性和亲石性赋予了Li均匀分布的优化特性。在电流密度为2.0 mA cm−2的不对称电池中,库仑效率在160次循环中超过98%,在对称测试中具有稳定的电压滞后和平均过电位25 mV,持续1350 h。用Li预沉积的复合阳极组装的全电池具有优异的容量保持能力,在2.0 C下,使用LiNi0.6Co0.2Mn0.2O2 (NCM622)阴极时,电池容量可达141 mAh g−1。结果表明,导电CNFs、HNCs和绝缘SiOx的优化组合有效地实现了Li的均匀沉积,显著提高了lma的循环稳定性和库仑效率(CE)。
3D Lithiophilic Freestanding Hosts with SiOx‐Embedded Hierarchical Porous N‐Doped Carbon Nanofibers for Dendrite‐Free Lithium Metal Batteries
3D host materials are promising for Li‐metal anodes (LMAs) because of their adaptability to volume changes and large areas that prevent current localization, hindering dendritic Li formation. Herein, freestanding porous N‐doped carbon nanofibers (PCNFs) with uniformly distributed SiOx are synthesized by electrospinning and subsequent carbonization. In these composites, tunnel‐like, open channels are formed between the CNFs by removing polystyrene (PS) and the hollow N‐doped nanocages (HNC) generated from zeolitic imidazolate frameworks‐8 (ZIF‐8) during carbonization, providing sufficient space for Li deposition. Accompanying these structural advantages, the adequate electron conductivity and lithophilic properties derived from the conductive N‐doped CNFs and insulating SiOx confer optimized characteristics for uniform Li distribution. The coulombic efficiency exceeds 98% over 160 cycles in asymmetrical cells at a current density of 2.0 mA cm−2, with stable voltage hysteresis and an average overpotential of 25 mV for 1350 h in symmetrical tests. Full cells assembled with composite anodes predeposited with Li exhibited excellent capacity retention, delivering 141 mAh g−1 at 2.0 C with LiNi0.6Co0.2Mn0.2O2 (NCM622) cathodes. The results highlight that the optimized combination of conductive CNFs, HNCs, and insulating SiOx effectively enables uniform Li deposition, significantly enhancing cycling stability and Coulombic efficiency (CE) of LMAs.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.