用于无阳极锂金属电池的多功能两性离子自愈聚合物电解质:计算视角

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-05-27 DOI:10.1002/smll.202503382
Liang‐Ting Wu, Yu‐Ting Zhan, Yu‐Cheng Chiu, Bing Joe Hwang, Jyh‐Chiang Jiang
{"title":"用于无阳极锂金属电池的多功能两性离子自愈聚合物电解质:计算视角","authors":"Liang‐Ting Wu, Yu‐Ting Zhan, Yu‐Cheng Chiu, Bing Joe Hwang, Jyh‐Chiang Jiang","doi":"10.1002/smll.202503382","DOIUrl":null,"url":null,"abstract":"The practical application of anode‐free lithium‐metal batteries (AFLMBs) is limited by their poor cycling performance and unstable solid electrolyte interphase (SEI). Self‐healing solid polymer electrolytes (SHSPEs) offer excellent flexibility and healing capabilities, which are expected to mitigate dendrite growth and improve AFLMB cycling performance. In this study, a novel zwitterionic SHSPE, P(SBMA‐<jats:italic>co</jats:italic>‐BA):LiTFSI, is proposed, and its suitability for AFLMBs is evaluated through density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. The sulfonate (RSO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>) group promotes Li<jats:sup>+</jats:sup> ion transport, and the electrostatic interaction between RSO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> and NR<jats:sub>4</jats:sub><jats:sup>+</jats:sup> groups drives the electrolyte's self‐healing after material damage. Electrolyte degradation on the Cu current collector during Li‐nucleation and on the Li metal surface during extensive Li metal plating is further examined. The SEI components are identified using atomic charge distribution analysis, which is typically compared with X‐ray photoelectron spectroscopy (XPS) data. The resulting organic/inorganic hybrid SEI demonstrates excellent flexibility and stability, and the long‐chain sulfonate‐containing compound facilitates rapid Li‐ion conduction and uniform Li metal plating. The multifunctional zwitterionic SHSPE, P(SBMA‐<jats:italic>co</jats:italic>‐BA):LiTFSI, thus shows significant potential to enhance the cycling performance of AFLMBs, paving the way for their practical application.","PeriodicalId":228,"journal":{"name":"Small","volume":"45 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional Zwitterionic Self‐Healing Polymer Electrolytes for Anode‐Free Lithium‐Metal Batteries: a Computational Perspective\",\"authors\":\"Liang‐Ting Wu, Yu‐Ting Zhan, Yu‐Cheng Chiu, Bing Joe Hwang, Jyh‐Chiang Jiang\",\"doi\":\"10.1002/smll.202503382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The practical application of anode‐free lithium‐metal batteries (AFLMBs) is limited by their poor cycling performance and unstable solid electrolyte interphase (SEI). Self‐healing solid polymer electrolytes (SHSPEs) offer excellent flexibility and healing capabilities, which are expected to mitigate dendrite growth and improve AFLMB cycling performance. In this study, a novel zwitterionic SHSPE, P(SBMA‐<jats:italic>co</jats:italic>‐BA):LiTFSI, is proposed, and its suitability for AFLMBs is evaluated through density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. The sulfonate (RSO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>) group promotes Li<jats:sup>+</jats:sup> ion transport, and the electrostatic interaction between RSO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> and NR<jats:sub>4</jats:sub><jats:sup>+</jats:sup> groups drives the electrolyte's self‐healing after material damage. Electrolyte degradation on the Cu current collector during Li‐nucleation and on the Li metal surface during extensive Li metal plating is further examined. The SEI components are identified using atomic charge distribution analysis, which is typically compared with X‐ray photoelectron spectroscopy (XPS) data. The resulting organic/inorganic hybrid SEI demonstrates excellent flexibility and stability, and the long‐chain sulfonate‐containing compound facilitates rapid Li‐ion conduction and uniform Li metal plating. The multifunctional zwitterionic SHSPE, P(SBMA‐<jats:italic>co</jats:italic>‐BA):LiTFSI, thus shows significant potential to enhance the cycling performance of AFLMBs, paving the way for their practical application.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202503382\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202503382","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

无阳极锂金属电池(aflmb)循环性能差,固体电解质界面相(SEI)不稳定,限制了其实际应用。自修复固体聚合物电解质(shspe)具有优异的灵活性和愈合能力,有望减缓枝晶生长并改善AFLMB循环性能。本研究提出了一种新型两性离子SHSPE, P(SBMA‐co‐BA):LiTFSI,并通过密度泛函理论(DFT)和从头算分子动力学(AIMD)模拟评估了其对aflmb的适用性。磺酸盐(RSO3−)基团促进Li+离子的传输,RSO3−和NR4+基团之间的静电相互作用驱动电解质在材料损伤后的自愈。进一步研究了锂成核过程中Cu集热器上电解液的降解和大面积镀锂金属过程中锂金属表面电解液的降解。使用原子电荷分布分析鉴定SEI组分,通常与X射线光电子能谱(XPS)数据进行比较。所得到的有机/无机杂化SEI表现出优异的柔韧性和稳定性,并且含有长链磺酸盐的化合物有助于快速的锂离子传导和均匀的锂金属镀层。因此,多功能两性离子SHSPE, P(SBMA‐co‐BA):LiTFSI在提高aflmb的循环性能方面显示出巨大的潜力,为其实际应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multifunctional Zwitterionic Self‐Healing Polymer Electrolytes for Anode‐Free Lithium‐Metal Batteries: a Computational Perspective

Multifunctional Zwitterionic Self‐Healing Polymer Electrolytes for Anode‐Free Lithium‐Metal Batteries: a Computational Perspective
The practical application of anode‐free lithium‐metal batteries (AFLMBs) is limited by their poor cycling performance and unstable solid electrolyte interphase (SEI). Self‐healing solid polymer electrolytes (SHSPEs) offer excellent flexibility and healing capabilities, which are expected to mitigate dendrite growth and improve AFLMB cycling performance. In this study, a novel zwitterionic SHSPE, P(SBMA‐co‐BA):LiTFSI, is proposed, and its suitability for AFLMBs is evaluated through density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. The sulfonate (RSO3) group promotes Li+ ion transport, and the electrostatic interaction between RSO3 and NR4+ groups drives the electrolyte's self‐healing after material damage. Electrolyte degradation on the Cu current collector during Li‐nucleation and on the Li metal surface during extensive Li metal plating is further examined. The SEI components are identified using atomic charge distribution analysis, which is typically compared with X‐ray photoelectron spectroscopy (XPS) data. The resulting organic/inorganic hybrid SEI demonstrates excellent flexibility and stability, and the long‐chain sulfonate‐containing compound facilitates rapid Li‐ion conduction and uniform Li metal plating. The multifunctional zwitterionic SHSPE, P(SBMA‐co‐BA):LiTFSI, thus shows significant potential to enhance the cycling performance of AFLMBs, paving the way for their practical application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信