大陆尺度的森林化学计量揭示了河流输送的颗粒元素组成的基本限制

IF 3.8 1区 地球科学 Q1 LIMNOLOGY
David W. P. Manning, Arial J. Shogren, Jonathan P. Benstead, Zacharie T. Loveless
{"title":"大陆尺度的森林化学计量揭示了河流输送的颗粒元素组成的基本限制","authors":"David W. P. Manning, Arial J. Shogren, Jonathan P. Benstead, Zacharie T. Loveless","doi":"10.1002/lno.70084","DOIUrl":null,"url":null,"abstract":"Suspended particulate matter, or seston, represents an understudied flux of carbon (C), nitrogen (N), and phosphorus (P) in river networks. Here, we summarize riverine seston C : N : P stoichiometry data from 27 streams and rivers sampled regularly from 2014 to 2022 across the United States by the National Ecological Observatory Network (NEON). We examine relationships among seston C, N, and P content using standardized major‐axis (SMA) and ordinary least squares slopes to test congruence with a constant‐ratio model (scaling coefficient = 1), and hierarchical models to identify watershed‐level covariates of seston C : nutrient stoichiometric allometry. At the continental scale, C and N were tightly coupled and conformed to the constant‐ratio model, while seston C : P and N : P indicated weaker coupling and inconstant ratios across the range of C vs. P and N vs. P values. At the stream‐site scale, C : N, C : P, and N : P often exhibited slopes < 1, indicating that within individual streams seston becomes more nutrient‐rich as seston concentration increases. Watershed forest cover, season, and discharge helped explain stoichiometric allometry across streams, where forested sites in wetter climates had lower scaling slopes, and slopes decreased with low flows. Our study underscores the importance of suspended particles as a material flux in river networks and highlights the interplay between biotic and abiotic factors that drive the relative consistency of its C : nutrient stoichiometry during transport from local to continental scales.","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"17 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continental‐scale seston stoichiometry reveals fundamental constraints on the elemental composition of particles transported by streams\",\"authors\":\"David W. P. Manning, Arial J. Shogren, Jonathan P. Benstead, Zacharie T. Loveless\",\"doi\":\"10.1002/lno.70084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Suspended particulate matter, or seston, represents an understudied flux of carbon (C), nitrogen (N), and phosphorus (P) in river networks. Here, we summarize riverine seston C : N : P stoichiometry data from 27 streams and rivers sampled regularly from 2014 to 2022 across the United States by the National Ecological Observatory Network (NEON). We examine relationships among seston C, N, and P content using standardized major‐axis (SMA) and ordinary least squares slopes to test congruence with a constant‐ratio model (scaling coefficient = 1), and hierarchical models to identify watershed‐level covariates of seston C : nutrient stoichiometric allometry. At the continental scale, C and N were tightly coupled and conformed to the constant‐ratio model, while seston C : P and N : P indicated weaker coupling and inconstant ratios across the range of C vs. P and N vs. P values. At the stream‐site scale, C : N, C : P, and N : P often exhibited slopes < 1, indicating that within individual streams seston becomes more nutrient‐rich as seston concentration increases. Watershed forest cover, season, and discharge helped explain stoichiometric allometry across streams, where forested sites in wetter climates had lower scaling slopes, and slopes decreased with low flows. Our study underscores the importance of suspended particles as a material flux in river networks and highlights the interplay between biotic and abiotic factors that drive the relative consistency of its C : nutrient stoichiometry during transport from local to continental scales.\",\"PeriodicalId\":18143,\"journal\":{\"name\":\"Limnology and Oceanography\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnology and Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/lno.70084\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/lno.70084","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

悬浮颗粒物(seston)代表了河网中碳(C)、氮(N)和磷(P)的一种尚未得到充分研究的通量。在这里,我们总结了美国国家生态观测站网络(NEON)在2014年至2022年期间定期采样的27条溪流和河流的河流期C: N: P化学计量数据。我们使用标准化长轴(SMA)和普通最小二乘斜率来检验物种C、N和P含量之间的关系,并使用恒比模型(标度系数= 1)和分层模型来确定物种C的流域水平协变量:营养化学计量异速测定。在大陆尺度上,C和N紧密耦合,符合恒定比模式,而C: P和N: P在C / P和N / P值范围内耦合较弱,呈非恒定比。在溪地尺度上,C: N、C: P和N: P经常表现出坡度;1,表明在单个溪流中,随着种积浓度的增加,种积变得更富营养。流域森林覆盖、季节和流量有助于解释河流间的化学计量异速,在湿润气候下的森林地点有较低的结垢坡度,并且坡度随着流量的减少而减少。我们的研究强调了悬浮颗粒作为河网物质通量的重要性,并强调了生物和非生物因素之间的相互作用,这些因素驱动了从局部到大陆尺度运输过程中C:营养化学计量的相对一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continental‐scale seston stoichiometry reveals fundamental constraints on the elemental composition of particles transported by streams
Suspended particulate matter, or seston, represents an understudied flux of carbon (C), nitrogen (N), and phosphorus (P) in river networks. Here, we summarize riverine seston C : N : P stoichiometry data from 27 streams and rivers sampled regularly from 2014 to 2022 across the United States by the National Ecological Observatory Network (NEON). We examine relationships among seston C, N, and P content using standardized major‐axis (SMA) and ordinary least squares slopes to test congruence with a constant‐ratio model (scaling coefficient = 1), and hierarchical models to identify watershed‐level covariates of seston C : nutrient stoichiometric allometry. At the continental scale, C and N were tightly coupled and conformed to the constant‐ratio model, while seston C : P and N : P indicated weaker coupling and inconstant ratios across the range of C vs. P and N vs. P values. At the stream‐site scale, C : N, C : P, and N : P often exhibited slopes < 1, indicating that within individual streams seston becomes more nutrient‐rich as seston concentration increases. Watershed forest cover, season, and discharge helped explain stoichiometric allometry across streams, where forested sites in wetter climates had lower scaling slopes, and slopes decreased with low flows. Our study underscores the importance of suspended particles as a material flux in river networks and highlights the interplay between biotic and abiotic factors that drive the relative consistency of its C : nutrient stoichiometry during transport from local to continental scales.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Limnology and Oceanography
Limnology and Oceanography 地学-海洋学
CiteScore
8.80
自引率
6.70%
发文量
254
审稿时长
3 months
期刊介绍: Limnology and Oceanography (L&O; print ISSN 0024-3590, online ISSN 1939-5590) publishes original articles, including scholarly reviews, about all aspects of limnology and oceanography. The journal''s unifying theme is the understanding of aquatic systems. Submissions are judged on the originality of their data, interpretations, and ideas, and on the degree to which they can be generalized beyond the particular aquatic system examined. Laboratory and modeling studies must demonstrate relevance to field environments; typically this means that they are bolstered by substantial "real-world" data. Few purely theoretical or purely empirical papers are accepted for review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信