Yuri D Ivanov, Natalia S Bukharina, Ivan D Shumov, Oleg N Afonin, Vadim Y Tatur, Anna V Grudo, Alexander I Archakov
{"title":"基于afm的细胞色素CYP102A1单个分子酶活性监测。","authors":"Yuri D Ivanov, Natalia S Bukharina, Ivan D Shumov, Oleg N Afonin, Vadim Y Tatur, Anna V Grudo, Alexander I Archakov","doi":"10.3390/bios15050303","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, we report the use of a nanotechnology-based approach for the study of enzyme-functionalized mica surfaces. Atomic force microscopy (AFM) has been employed for the determination of the catalytic activity of single molecules of heme-containing cytochrome P450 CYP102A1 (CYP102A1) enzyme, which was immobilized on the surface of a mica chip. Height fluctuations in individual molecules of the enzyme were measured under near-native conditions by AFM measurements in liquid using a cantilever with a 10 to 20 nm tip curvature radius. We have found that in the process of enzymatic catalysis, the mean amplitude of height fluctuations in individual enzyme molecules is 1.4-fold higher than that of enzyme molecules in an inactive state. The temperature dependence of the mean amplitude of height fluctuations in cytochrome CYP102A1 has been revealed, and the maximum of this dependence has been observed at 22 °C. The proposed nanotechnology-based approach can be employed in studies of a wide variety of enzymes, which are important for the development of novel diagnostic tests and systems for pharmaceutical analysis. The approach developed in our work will favor further miniaturization of enzyme-based biosensors and the transition from traditional sensors to nanobiosensors.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 5","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109581/pdf/","citationCount":"0","resultStr":"{\"title\":\"AFM-Based Monitoring of Enzymatic Activity of Individual Molecules of Cytochrome CYP102A1.\",\"authors\":\"Yuri D Ivanov, Natalia S Bukharina, Ivan D Shumov, Oleg N Afonin, Vadim Y Tatur, Anna V Grudo, Alexander I Archakov\",\"doi\":\"10.3390/bios15050303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Herein, we report the use of a nanotechnology-based approach for the study of enzyme-functionalized mica surfaces. Atomic force microscopy (AFM) has been employed for the determination of the catalytic activity of single molecules of heme-containing cytochrome P450 CYP102A1 (CYP102A1) enzyme, which was immobilized on the surface of a mica chip. Height fluctuations in individual molecules of the enzyme were measured under near-native conditions by AFM measurements in liquid using a cantilever with a 10 to 20 nm tip curvature radius. We have found that in the process of enzymatic catalysis, the mean amplitude of height fluctuations in individual enzyme molecules is 1.4-fold higher than that of enzyme molecules in an inactive state. The temperature dependence of the mean amplitude of height fluctuations in cytochrome CYP102A1 has been revealed, and the maximum of this dependence has been observed at 22 °C. The proposed nanotechnology-based approach can be employed in studies of a wide variety of enzymes, which are important for the development of novel diagnostic tests and systems for pharmaceutical analysis. The approach developed in our work will favor further miniaturization of enzyme-based biosensors and the transition from traditional sensors to nanobiosensors.</p>\",\"PeriodicalId\":48608,\"journal\":{\"name\":\"Biosensors-Basel\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109581/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors-Basel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bios15050303\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15050303","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
AFM-Based Monitoring of Enzymatic Activity of Individual Molecules of Cytochrome CYP102A1.
Herein, we report the use of a nanotechnology-based approach for the study of enzyme-functionalized mica surfaces. Atomic force microscopy (AFM) has been employed for the determination of the catalytic activity of single molecules of heme-containing cytochrome P450 CYP102A1 (CYP102A1) enzyme, which was immobilized on the surface of a mica chip. Height fluctuations in individual molecules of the enzyme were measured under near-native conditions by AFM measurements in liquid using a cantilever with a 10 to 20 nm tip curvature radius. We have found that in the process of enzymatic catalysis, the mean amplitude of height fluctuations in individual enzyme molecules is 1.4-fold higher than that of enzyme molecules in an inactive state. The temperature dependence of the mean amplitude of height fluctuations in cytochrome CYP102A1 has been revealed, and the maximum of this dependence has been observed at 22 °C. The proposed nanotechnology-based approach can be employed in studies of a wide variety of enzymes, which are important for the development of novel diagnostic tests and systems for pharmaceutical analysis. The approach developed in our work will favor further miniaturization of enzyme-based biosensors and the transition from traditional sensors to nanobiosensors.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.