Jonathan Suazo-Hernández, Rawan Mlih, Marion Bustamante, Carmen Castro-Castillo, María de la Luz Mora, María de Los Ángeles Sepúlveda-Parada, Catalina Mella, Pablo Cornejo, Antonieta Ruiz
{"title":"氧化锌纳米颗粒固定化土壤无机磷的研究。","authors":"Jonathan Suazo-Hernández, Rawan Mlih, Marion Bustamante, Carmen Castro-Castillo, María de la Luz Mora, María de Los Ángeles Sepúlveda-Parada, Catalina Mella, Pablo Cornejo, Antonieta Ruiz","doi":"10.3390/toxics13050363","DOIUrl":null,"url":null,"abstract":"<p><p>The overuse of inorganic phosphate fertilizers in soils has led to the transfer of inorganic phosphorus (Pi) to aquatic ecosystems, resulting in eutrophication. Adsorption-desorption studies in batch systems were used to evaluate the effect of adding 1% zinc oxide (ZnO) engineered nanoparticles (ENPs) on Pi retention in Ultisol, and Mollisol soils. The 1% ZnO-ENPs showed increased chemical properties such as pH, electrical conductivity, and organic matter content, and reduce nutrient bioavailability (P, N, and Zn), and physical properties such as surface area and pore size of the two soils. The kinetic data of Pi adsorption on Ultisol, Mollisol, Ultisol + 1% ZnO-ENP, and Mollisol + 1% ZnO-ENP systems fitted well to the pseudo-second-order model (r<sup>2</sup> ≥ 0.942, and χ<sup>2</sup> ≤ 61), and the Elovich model (r<sup>2</sup> ≥ 0.951, and χ<sup>2</sup> ≤ 32). Pi adsorption isotherms for the Ultisol soil adequately fitted to the Freundlich model (r<sup>2</sup> = 0.976, and χ<sup>2</sup> = 16), and for the Mollisol soil, the Langmuir model (r<sup>2</sup> = 0.991, and χ<sup>2</sup> = 3) had a better fit to the data. With 1% ZnO-ENPs, the linear, Langmuir, and Freundlich models correctly described the Pi adsorption data. Pi desorption was reduced in the Ultisol compared to the Mollisol soil, and with 1% ZnO-ENPs further decreased Pi desorption in both soils. Therefore, ENPs can be used as a new alternative material for Pi fixation in agricultural soils and contribute to mitigating eutrophication issues of aqueous systems.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12116105/pdf/","citationCount":"0","resultStr":"{\"title\":\"Immobilization of Inorganic Phosphorus on Soils by Zinc Oxide Engineered Nanoparticles.\",\"authors\":\"Jonathan Suazo-Hernández, Rawan Mlih, Marion Bustamante, Carmen Castro-Castillo, María de la Luz Mora, María de Los Ángeles Sepúlveda-Parada, Catalina Mella, Pablo Cornejo, Antonieta Ruiz\",\"doi\":\"10.3390/toxics13050363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The overuse of inorganic phosphate fertilizers in soils has led to the transfer of inorganic phosphorus (Pi) to aquatic ecosystems, resulting in eutrophication. Adsorption-desorption studies in batch systems were used to evaluate the effect of adding 1% zinc oxide (ZnO) engineered nanoparticles (ENPs) on Pi retention in Ultisol, and Mollisol soils. The 1% ZnO-ENPs showed increased chemical properties such as pH, electrical conductivity, and organic matter content, and reduce nutrient bioavailability (P, N, and Zn), and physical properties such as surface area and pore size of the two soils. The kinetic data of Pi adsorption on Ultisol, Mollisol, Ultisol + 1% ZnO-ENP, and Mollisol + 1% ZnO-ENP systems fitted well to the pseudo-second-order model (r<sup>2</sup> ≥ 0.942, and χ<sup>2</sup> ≤ 61), and the Elovich model (r<sup>2</sup> ≥ 0.951, and χ<sup>2</sup> ≤ 32). Pi adsorption isotherms for the Ultisol soil adequately fitted to the Freundlich model (r<sup>2</sup> = 0.976, and χ<sup>2</sup> = 16), and for the Mollisol soil, the Langmuir model (r<sup>2</sup> = 0.991, and χ<sup>2</sup> = 3) had a better fit to the data. With 1% ZnO-ENPs, the linear, Langmuir, and Freundlich models correctly described the Pi adsorption data. Pi desorption was reduced in the Ultisol compared to the Mollisol soil, and with 1% ZnO-ENPs further decreased Pi desorption in both soils. Therefore, ENPs can be used as a new alternative material for Pi fixation in agricultural soils and contribute to mitigating eutrophication issues of aqueous systems.</p>\",\"PeriodicalId\":23195,\"journal\":{\"name\":\"Toxics\",\"volume\":\"13 5\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12116105/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/toxics13050363\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13050363","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Immobilization of Inorganic Phosphorus on Soils by Zinc Oxide Engineered Nanoparticles.
The overuse of inorganic phosphate fertilizers in soils has led to the transfer of inorganic phosphorus (Pi) to aquatic ecosystems, resulting in eutrophication. Adsorption-desorption studies in batch systems were used to evaluate the effect of adding 1% zinc oxide (ZnO) engineered nanoparticles (ENPs) on Pi retention in Ultisol, and Mollisol soils. The 1% ZnO-ENPs showed increased chemical properties such as pH, electrical conductivity, and organic matter content, and reduce nutrient bioavailability (P, N, and Zn), and physical properties such as surface area and pore size of the two soils. The kinetic data of Pi adsorption on Ultisol, Mollisol, Ultisol + 1% ZnO-ENP, and Mollisol + 1% ZnO-ENP systems fitted well to the pseudo-second-order model (r2 ≥ 0.942, and χ2 ≤ 61), and the Elovich model (r2 ≥ 0.951, and χ2 ≤ 32). Pi adsorption isotherms for the Ultisol soil adequately fitted to the Freundlich model (r2 = 0.976, and χ2 = 16), and for the Mollisol soil, the Langmuir model (r2 = 0.991, and χ2 = 3) had a better fit to the data. With 1% ZnO-ENPs, the linear, Langmuir, and Freundlich models correctly described the Pi adsorption data. Pi desorption was reduced in the Ultisol compared to the Mollisol soil, and with 1% ZnO-ENPs further decreased Pi desorption in both soils. Therefore, ENPs can be used as a new alternative material for Pi fixation in agricultural soils and contribute to mitigating eutrophication issues of aqueous systems.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.