Georgiana-Diana Gabur, Anamaria-Ioana Dumitrașcu, Carmen Teodosiu, Valeriu V Cotea, Iulian Gabur
{"title":"基于葡萄渣的替代生物吸附剂:减少重金属和农药。","authors":"Georgiana-Diana Gabur, Anamaria-Ioana Dumitrașcu, Carmen Teodosiu, Valeriu V Cotea, Iulian Gabur","doi":"10.3390/toxics13050408","DOIUrl":null,"url":null,"abstract":"<p><p>Heavy metal and pesticide contaminations represent significant environmental and health hazards to humans and animals. Toxic heavy metals such as lead (Pb), cadmium (Cd), mercury (Hg), and copper (Cu) persist in the environment, bioaccumulating in beverages and food products from both natural and anthropogenic sources. Traditional remediation techniques, such as chemical precipitation and ion exchange, are effective but often costly and challenging to apply at a large scale. In recent years, grape pomace-a winemaking by-product rich in bioactive compounds-has emerged as a promising, low-cost biosorbent for the removal of such pollutants. Its high adsorption capacity, environmental friendliness, and availability make it a strong candidate for water and food decontamination processes. This study evaluates grape pomace and its biochar as sustainable biosorbents for heavy metal removal from water and soil, examining their adsorption efficiency, adsorption mechanisms, environmental benefits, advantages, limitations, and perspectives for future industrial-scale applications.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12116072/pdf/","citationCount":"0","resultStr":"{\"title\":\"Alternative Biosorbents Based on Grape Pomace: Reducing Heavy Metals and Pesticides.\",\"authors\":\"Georgiana-Diana Gabur, Anamaria-Ioana Dumitrașcu, Carmen Teodosiu, Valeriu V Cotea, Iulian Gabur\",\"doi\":\"10.3390/toxics13050408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heavy metal and pesticide contaminations represent significant environmental and health hazards to humans and animals. Toxic heavy metals such as lead (Pb), cadmium (Cd), mercury (Hg), and copper (Cu) persist in the environment, bioaccumulating in beverages and food products from both natural and anthropogenic sources. Traditional remediation techniques, such as chemical precipitation and ion exchange, are effective but often costly and challenging to apply at a large scale. In recent years, grape pomace-a winemaking by-product rich in bioactive compounds-has emerged as a promising, low-cost biosorbent for the removal of such pollutants. Its high adsorption capacity, environmental friendliness, and availability make it a strong candidate for water and food decontamination processes. This study evaluates grape pomace and its biochar as sustainable biosorbents for heavy metal removal from water and soil, examining their adsorption efficiency, adsorption mechanisms, environmental benefits, advantages, limitations, and perspectives for future industrial-scale applications.</p>\",\"PeriodicalId\":23195,\"journal\":{\"name\":\"Toxics\",\"volume\":\"13 5\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12116072/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/toxics13050408\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13050408","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Alternative Biosorbents Based on Grape Pomace: Reducing Heavy Metals and Pesticides.
Heavy metal and pesticide contaminations represent significant environmental and health hazards to humans and animals. Toxic heavy metals such as lead (Pb), cadmium (Cd), mercury (Hg), and copper (Cu) persist in the environment, bioaccumulating in beverages and food products from both natural and anthropogenic sources. Traditional remediation techniques, such as chemical precipitation and ion exchange, are effective but often costly and challenging to apply at a large scale. In recent years, grape pomace-a winemaking by-product rich in bioactive compounds-has emerged as a promising, low-cost biosorbent for the removal of such pollutants. Its high adsorption capacity, environmental friendliness, and availability make it a strong candidate for water and food decontamination processes. This study evaluates grape pomace and its biochar as sustainable biosorbents for heavy metal removal from water and soil, examining their adsorption efficiency, adsorption mechanisms, environmental benefits, advantages, limitations, and perspectives for future industrial-scale applications.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.