{"title":"BLF1影响天然和突变eIF4A1和eIF4A2蛋白催化的ATP水解。","authors":"Min An, Xin Cheng, Yu Zhang, Jiang Gu, Xuhu Mao","doi":"10.3390/toxins17050232","DOIUrl":null,"url":null,"abstract":"<p><p><i>Burkholderia</i> lethal factor 1 (BLF1), a toxin derived from <i>Burkholderia pseudomallei</i>, reacts with eukaryotic initiation factor (eIF) 4A to inhibit protein synthesis. eIF4A1 and eIF4A2 are involved in translation initiation and share over 90% sequence similarity. However, they exert distinct effects on cancer treatment outcomes. To understand the molecular mechanism by which BLF1 modulates eIF4A isoforms in cancer cells, we investigated its effects on eIF4A-mediated adenosine 5'-triphosphate (ATP) hydrolysis. We found that eIF4A1 has a higher ATP-binding affinity compared to eIF4A2 (K<sub>m</sub> = 6.55 ± 0.78 μM vs. K<sub>m</sub> = 11.61 ± 2.33 μM). Meanwhile, we also found that eIF4A1 is more sensitive to changes in temperature, pH, and Mg<sup>2+</sup> concentration. Through N-terminal swapping and single amino acid mutations, we found that leucine 98 (L98) and alanine 100 (A100) play important roles in the ATPase activities of eIF4A isoforms. Moreover, BLF1 treatment significantly enhanced eIF4A2-mediated ATP hydrolysis at all tested ATP concentrations. These differences in BLF1-regulated eIF4A isoforms may explain its selective cytotoxicity against cancer cells. Our findings provide molecular insights into the functional difference between eIF4A isoforms and suggest that BLF1 might be of promising value for anticancer therapies.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"17 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115832/pdf/","citationCount":"0","resultStr":"{\"title\":\"BLF1 Affects ATP Hydrolysis Catalyzed by Native and Mutated eIF4A1 and eIF4A2 Proteins.\",\"authors\":\"Min An, Xin Cheng, Yu Zhang, Jiang Gu, Xuhu Mao\",\"doi\":\"10.3390/toxins17050232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Burkholderia</i> lethal factor 1 (BLF1), a toxin derived from <i>Burkholderia pseudomallei</i>, reacts with eukaryotic initiation factor (eIF) 4A to inhibit protein synthesis. eIF4A1 and eIF4A2 are involved in translation initiation and share over 90% sequence similarity. However, they exert distinct effects on cancer treatment outcomes. To understand the molecular mechanism by which BLF1 modulates eIF4A isoforms in cancer cells, we investigated its effects on eIF4A-mediated adenosine 5'-triphosphate (ATP) hydrolysis. We found that eIF4A1 has a higher ATP-binding affinity compared to eIF4A2 (K<sub>m</sub> = 6.55 ± 0.78 μM vs. K<sub>m</sub> = 11.61 ± 2.33 μM). Meanwhile, we also found that eIF4A1 is more sensitive to changes in temperature, pH, and Mg<sup>2+</sup> concentration. Through N-terminal swapping and single amino acid mutations, we found that leucine 98 (L98) and alanine 100 (A100) play important roles in the ATPase activities of eIF4A isoforms. Moreover, BLF1 treatment significantly enhanced eIF4A2-mediated ATP hydrolysis at all tested ATP concentrations. These differences in BLF1-regulated eIF4A isoforms may explain its selective cytotoxicity against cancer cells. Our findings provide molecular insights into the functional difference between eIF4A isoforms and suggest that BLF1 might be of promising value for anticancer therapies.</p>\",\"PeriodicalId\":23119,\"journal\":{\"name\":\"Toxins\",\"volume\":\"17 5\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115832/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxins\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/toxins17050232\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxins","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/toxins17050232","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
伯克霍尔德氏菌致死因子1 (BLF1)是一种源自假假伯克霍尔德氏菌的毒素,与真核起始因子(eIF) 4A反应抑制蛋白质合成。eIF4A1和eIF4A2参与翻译起始,序列相似性超过90%。然而,它们对癌症治疗结果有不同的影响。为了了解BLF1调节癌细胞中eIF4A亚型的分子机制,我们研究了BLF1对eIF4A介导的腺苷5'-三磷酸(ATP)水解的影响。我们发现eIF4A1与eIF4A2相比具有更高的atp结合亲和力(Km = 6.55±0.78 μM vs. Km = 11.61±2.33 μM)。同时,我们还发现eIF4A1对温度、pH和Mg2+浓度的变化更为敏感。通过n端交换和单氨基酸突变,我们发现亮氨酸98 (L98)和丙氨酸100 (A100)在eIF4A同工型的atp酶活性中起重要作用。此外,在所有测试的ATP浓度下,BLF1处理显著增强了eif4a2介导的ATP水解。blf1调控的eIF4A亚型的这些差异可能解释了其对癌细胞的选择性细胞毒性。我们的研究结果为eIF4A亚型之间的功能差异提供了分子视角,并表明BLF1可能在抗癌治疗中具有很好的价值。
BLF1 Affects ATP Hydrolysis Catalyzed by Native and Mutated eIF4A1 and eIF4A2 Proteins.
Burkholderia lethal factor 1 (BLF1), a toxin derived from Burkholderia pseudomallei, reacts with eukaryotic initiation factor (eIF) 4A to inhibit protein synthesis. eIF4A1 and eIF4A2 are involved in translation initiation and share over 90% sequence similarity. However, they exert distinct effects on cancer treatment outcomes. To understand the molecular mechanism by which BLF1 modulates eIF4A isoforms in cancer cells, we investigated its effects on eIF4A-mediated adenosine 5'-triphosphate (ATP) hydrolysis. We found that eIF4A1 has a higher ATP-binding affinity compared to eIF4A2 (Km = 6.55 ± 0.78 μM vs. Km = 11.61 ± 2.33 μM). Meanwhile, we also found that eIF4A1 is more sensitive to changes in temperature, pH, and Mg2+ concentration. Through N-terminal swapping and single amino acid mutations, we found that leucine 98 (L98) and alanine 100 (A100) play important roles in the ATPase activities of eIF4A isoforms. Moreover, BLF1 treatment significantly enhanced eIF4A2-mediated ATP hydrolysis at all tested ATP concentrations. These differences in BLF1-regulated eIF4A isoforms may explain its selective cytotoxicity against cancer cells. Our findings provide molecular insights into the functional difference between eIF4A isoforms and suggest that BLF1 might be of promising value for anticancer therapies.
期刊介绍:
Toxins (ISSN 2072-6651) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to toxins and toxinology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.