{"title":"抗艰难梭菌感染:疫苗研制进展","authors":"Jingyao Wang, Qianquan Ma, Songhai Tian","doi":"10.3390/toxins17050222","DOIUrl":null,"url":null,"abstract":"<p><p><i>Clostridioides difficile</i> (<i>C. difficile</i>) is a major pathogen responsible for antibiotic-associated diarrhea, frequently observed in hospital settings. Due to the widespread use of antibiotics, the incidence and severity of <i>C. difficile</i> infection (CDI) are rising across the world. CDI is primarily driven by two homologous protein exotoxins, toxin A (TcdA) and toxin B (TcdB). Other putative virulence factors include binary toxin CDT, surface layer proteins, phosphorylated polysaccharides, and spore coat proteins. These <i>C. difficile</i> virulence factors are potential targets for vaccine development. Although several <i>C. difficile</i> vaccines have entered clinical trials, there is currently no approved vaccine on the market. This review outlines the intoxication mechanism during CDI, emphasizing the potential antigens that can be used for vaccine development. We aim to provide a comprehensive overview of the current status of research and development of <i>C. difficile</i> vaccines.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"17 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115615/pdf/","citationCount":"0","resultStr":"{\"title\":\"Against <i>Clostridioides difficile</i> Infection: An Update on Vaccine Development.\",\"authors\":\"Jingyao Wang, Qianquan Ma, Songhai Tian\",\"doi\":\"10.3390/toxins17050222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Clostridioides difficile</i> (<i>C. difficile</i>) is a major pathogen responsible for antibiotic-associated diarrhea, frequently observed in hospital settings. Due to the widespread use of antibiotics, the incidence and severity of <i>C. difficile</i> infection (CDI) are rising across the world. CDI is primarily driven by two homologous protein exotoxins, toxin A (TcdA) and toxin B (TcdB). Other putative virulence factors include binary toxin CDT, surface layer proteins, phosphorylated polysaccharides, and spore coat proteins. These <i>C. difficile</i> virulence factors are potential targets for vaccine development. Although several <i>C. difficile</i> vaccines have entered clinical trials, there is currently no approved vaccine on the market. This review outlines the intoxication mechanism during CDI, emphasizing the potential antigens that can be used for vaccine development. We aim to provide a comprehensive overview of the current status of research and development of <i>C. difficile</i> vaccines.</p>\",\"PeriodicalId\":23119,\"journal\":{\"name\":\"Toxins\",\"volume\":\"17 5\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115615/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxins\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/toxins17050222\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxins","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/toxins17050222","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Against Clostridioides difficile Infection: An Update on Vaccine Development.
Clostridioides difficile (C. difficile) is a major pathogen responsible for antibiotic-associated diarrhea, frequently observed in hospital settings. Due to the widespread use of antibiotics, the incidence and severity of C. difficile infection (CDI) are rising across the world. CDI is primarily driven by two homologous protein exotoxins, toxin A (TcdA) and toxin B (TcdB). Other putative virulence factors include binary toxin CDT, surface layer proteins, phosphorylated polysaccharides, and spore coat proteins. These C. difficile virulence factors are potential targets for vaccine development. Although several C. difficile vaccines have entered clinical trials, there is currently no approved vaccine on the market. This review outlines the intoxication mechanism during CDI, emphasizing the potential antigens that can be used for vaccine development. We aim to provide a comprehensive overview of the current status of research and development of C. difficile vaccines.
期刊介绍:
Toxins (ISSN 2072-6651) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to toxins and toxinology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.