{"title":"生物医学应用的碳纳米管场效应晶体管生物传感器:十年发展和进步(2016-2025)。","authors":"Joydip Sengupta, Chaudhery Mustansar Hussain","doi":"10.3390/bios15050296","DOIUrl":null,"url":null,"abstract":"<p><p>Advancements in carbon nanotube-based FET (CNT-FET) biosensors from 2016 to 2025 have boosted their sensitivity, specificity, and rapid detection performance for biomedical purposes. This review highlights key innovations in transducer materials, functionalization strategies, and device architectures, including floating-gate CNT-FETs for detecting cancer biomarkers, infectious disease antigens, and neurodegenerative disease markers. Novel approaches, such as dual-microfluidic field-effect biosensor (dual-MFB) structures and carboxylated graphene quantum dot (cGQD) coupling, have further expanded their diagnostic potential. Despite significant progress, challenges in scalability, reproducibility, and long-term stability remain. Overall, this work highlights the transformative potential of CNT-FET biosensors while outlining a roadmap for translating laboratory innovations into practical, high-impact biomedical applications.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 5","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109531/pdf/","citationCount":"0","resultStr":"{\"title\":\"Carbon Nanotube-Based Field-Effect Transistor Biosensors for Biomedical Applications: Decadal Developments and Advancements (2016-2025).\",\"authors\":\"Joydip Sengupta, Chaudhery Mustansar Hussain\",\"doi\":\"10.3390/bios15050296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advancements in carbon nanotube-based FET (CNT-FET) biosensors from 2016 to 2025 have boosted their sensitivity, specificity, and rapid detection performance for biomedical purposes. This review highlights key innovations in transducer materials, functionalization strategies, and device architectures, including floating-gate CNT-FETs for detecting cancer biomarkers, infectious disease antigens, and neurodegenerative disease markers. Novel approaches, such as dual-microfluidic field-effect biosensor (dual-MFB) structures and carboxylated graphene quantum dot (cGQD) coupling, have further expanded their diagnostic potential. Despite significant progress, challenges in scalability, reproducibility, and long-term stability remain. Overall, this work highlights the transformative potential of CNT-FET biosensors while outlining a roadmap for translating laboratory innovations into practical, high-impact biomedical applications.</p>\",\"PeriodicalId\":48608,\"journal\":{\"name\":\"Biosensors-Basel\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109531/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors-Basel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bios15050296\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15050296","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Carbon Nanotube-Based Field-Effect Transistor Biosensors for Biomedical Applications: Decadal Developments and Advancements (2016-2025).
Advancements in carbon nanotube-based FET (CNT-FET) biosensors from 2016 to 2025 have boosted their sensitivity, specificity, and rapid detection performance for biomedical purposes. This review highlights key innovations in transducer materials, functionalization strategies, and device architectures, including floating-gate CNT-FETs for detecting cancer biomarkers, infectious disease antigens, and neurodegenerative disease markers. Novel approaches, such as dual-microfluidic field-effect biosensor (dual-MFB) structures and carboxylated graphene quantum dot (cGQD) coupling, have further expanded their diagnostic potential. Despite significant progress, challenges in scalability, reproducibility, and long-term stability remain. Overall, this work highlights the transformative potential of CNT-FET biosensors while outlining a roadmap for translating laboratory innovations into practical, high-impact biomedical applications.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.