Christian Freise, Susanne Metzkow, Andreas Zappe, Monika Ebert, Nicola Stolzenburg, Julia Hahndorf, Jörg Schnorr, Kevin Pagel, Matthias Taupitz
{"title":"尿毒症毒素无机磷酸盐、吲哚基硫酸盐、对甲酰硫酸盐和氧化三甲胺通过pAKT信号传导诱导主动脉组织和血管细胞中硫酸化糖胺聚糖的产生:“肠基质轴”中的缺失环节。","authors":"Christian Freise, Susanne Metzkow, Andreas Zappe, Monika Ebert, Nicola Stolzenburg, Julia Hahndorf, Jörg Schnorr, Kevin Pagel, Matthias Taupitz","doi":"10.3390/toxins17050217","DOIUrl":null,"url":null,"abstract":"<p><p>Gut-derived uremic toxins (UTs) contribute to cardiovascular disorders like atherosclerosis and cardiomyopathy in patients with chronic kidney disease (CKD), causing increased cardiovascular morbidity and mortality. The intermediate steps between higher concentrations of gut-derived UTs and organ damage caused by UTs are still insufficiently understood. Glycosaminoglycans (GAGs) as components of the extracellular matrix are known to interact with various ligands such as growth factors or receptors, thereby influencing (patho)physiological processes. We previously found that the UT inorganic phosphate (Pi) induces the synthesis and sulphation of the GAGs heparan sulphate and chondroitin sulphate in the rat vascular smooth muscle cell (VSMC) line A7r5 and in the human endothelial cell (EC) line EA.Hy926. The aim of this study was to investigate if other organic UTs modulate GAGs in vascular cells as well. We treated ex vivo cultures of rat aortic rings as well as primary rat VSMCs and human ECs with the UTs Pi, indoxylsulphate (IS), p-cresylsulphate (pCS), trimethylamine N-oxide (TMAO), and urea, and analyzed the samples by histological staining, qPCR, western blot, HPLC, and colorimetric assays. The UT treatment of aortic rings and cells increased contents of sulphated GAGs and hyaluronic acid. UT-treated cells contained higher amounts of 4S- and 6S-sulphated GAGs compared to controls. This was accompanied by altered expressions of genes and proteins relevant for GAG metabolism. Mechanistically, the effects of the UTs on GAGs involve the activation of the PI3K/Akt pathway and of the transcription factor NF-κB. In conclusion, the UT-induced remodeling of the cardiovascular matrix by upregulation of sulphated GAGs and hyaluronic acid in aortic tissue and vascular cells might be a missing link between gut-derived UT and pathophysiological alterations in the cardiovascular system in the sense of a gut-matrix axis.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"17 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115552/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Uremic Toxins Inorganic Phosphate, Indoxylsulphate, p-Cresylsulphate, and TMAO Induce the Generation of Sulphated Glycosaminoglycans in Aortic Tissue and Vascular Cells via pAKT Signaling: A Missing Link in the \\\"Gut-Matrix Axis\\\".\",\"authors\":\"Christian Freise, Susanne Metzkow, Andreas Zappe, Monika Ebert, Nicola Stolzenburg, Julia Hahndorf, Jörg Schnorr, Kevin Pagel, Matthias Taupitz\",\"doi\":\"10.3390/toxins17050217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gut-derived uremic toxins (UTs) contribute to cardiovascular disorders like atherosclerosis and cardiomyopathy in patients with chronic kidney disease (CKD), causing increased cardiovascular morbidity and mortality. The intermediate steps between higher concentrations of gut-derived UTs and organ damage caused by UTs are still insufficiently understood. Glycosaminoglycans (GAGs) as components of the extracellular matrix are known to interact with various ligands such as growth factors or receptors, thereby influencing (patho)physiological processes. We previously found that the UT inorganic phosphate (Pi) induces the synthesis and sulphation of the GAGs heparan sulphate and chondroitin sulphate in the rat vascular smooth muscle cell (VSMC) line A7r5 and in the human endothelial cell (EC) line EA.Hy926. The aim of this study was to investigate if other organic UTs modulate GAGs in vascular cells as well. We treated ex vivo cultures of rat aortic rings as well as primary rat VSMCs and human ECs with the UTs Pi, indoxylsulphate (IS), p-cresylsulphate (pCS), trimethylamine N-oxide (TMAO), and urea, and analyzed the samples by histological staining, qPCR, western blot, HPLC, and colorimetric assays. The UT treatment of aortic rings and cells increased contents of sulphated GAGs and hyaluronic acid. UT-treated cells contained higher amounts of 4S- and 6S-sulphated GAGs compared to controls. This was accompanied by altered expressions of genes and proteins relevant for GAG metabolism. Mechanistically, the effects of the UTs on GAGs involve the activation of the PI3K/Akt pathway and of the transcription factor NF-κB. In conclusion, the UT-induced remodeling of the cardiovascular matrix by upregulation of sulphated GAGs and hyaluronic acid in aortic tissue and vascular cells might be a missing link between gut-derived UT and pathophysiological alterations in the cardiovascular system in the sense of a gut-matrix axis.</p>\",\"PeriodicalId\":23119,\"journal\":{\"name\":\"Toxins\",\"volume\":\"17 5\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115552/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxins\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/toxins17050217\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxins","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/toxins17050217","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
The Uremic Toxins Inorganic Phosphate, Indoxylsulphate, p-Cresylsulphate, and TMAO Induce the Generation of Sulphated Glycosaminoglycans in Aortic Tissue and Vascular Cells via pAKT Signaling: A Missing Link in the "Gut-Matrix Axis".
Gut-derived uremic toxins (UTs) contribute to cardiovascular disorders like atherosclerosis and cardiomyopathy in patients with chronic kidney disease (CKD), causing increased cardiovascular morbidity and mortality. The intermediate steps between higher concentrations of gut-derived UTs and organ damage caused by UTs are still insufficiently understood. Glycosaminoglycans (GAGs) as components of the extracellular matrix are known to interact with various ligands such as growth factors or receptors, thereby influencing (patho)physiological processes. We previously found that the UT inorganic phosphate (Pi) induces the synthesis and sulphation of the GAGs heparan sulphate and chondroitin sulphate in the rat vascular smooth muscle cell (VSMC) line A7r5 and in the human endothelial cell (EC) line EA.Hy926. The aim of this study was to investigate if other organic UTs modulate GAGs in vascular cells as well. We treated ex vivo cultures of rat aortic rings as well as primary rat VSMCs and human ECs with the UTs Pi, indoxylsulphate (IS), p-cresylsulphate (pCS), trimethylamine N-oxide (TMAO), and urea, and analyzed the samples by histological staining, qPCR, western blot, HPLC, and colorimetric assays. The UT treatment of aortic rings and cells increased contents of sulphated GAGs and hyaluronic acid. UT-treated cells contained higher amounts of 4S- and 6S-sulphated GAGs compared to controls. This was accompanied by altered expressions of genes and proteins relevant for GAG metabolism. Mechanistically, the effects of the UTs on GAGs involve the activation of the PI3K/Akt pathway and of the transcription factor NF-κB. In conclusion, the UT-induced remodeling of the cardiovascular matrix by upregulation of sulphated GAGs and hyaluronic acid in aortic tissue and vascular cells might be a missing link between gut-derived UT and pathophysiological alterations in the cardiovascular system in the sense of a gut-matrix axis.
期刊介绍:
Toxins (ISSN 2072-6651) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to toxins and toxinology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.