Rajashree Nambiar, Ranjith Bhat, Balachandra Achar H V
{"title":"血液恶性肿瘤检测的进展:方法和新趋势的综合调查。","authors":"Rajashree Nambiar, Ranjith Bhat, Balachandra Achar H V","doi":"10.1155/tswj/1671766","DOIUrl":null,"url":null,"abstract":"<p><p>The investigation and diagnosis of hematologic malignancy using blood cell image analysis are major and emerging subjects that lie at the intersection of artificial intelligence and medical research. This survey systematically examines the state-of-the-art in blood cancer detection through image-based analysis, aimed at identifying the most effective computational strategies and highlighting emerging trends. This review focuses on three principal objectives, namely, to categorize and compare traditional machine learning (ML), deep learning (DL), and hybrid learning approaches; to evaluate performance metrics such as accuracy, precision, recall, and area under the ROC curve; and to identify methodological gaps and propose directions for future research. Methodologically, we organize the literature by categorizing the malignancy types-leukemia, lymphoma, and multiple myeloma-and particularizing the preprocessing steps, feature extraction techniques, network architectures, and ensemble strategies employed. For ML methods, we discuss classical classifiers including support vector machines and random forests; for DL, we analyze convolutional neural networks (e.g., AlexNet, VGG, and ResNet) and transformer-based models; and for hybrid systems, we examine combinations of CNNs with attention mechanisms or traditional classifiers. Our synthesis reveals that DL models consistently outperform ML baselines, achieving classification accuracies above 95% in benchmark datasets, with hybrid models pushing peak accuracy to 99.7%. However, challenges remain in data scarcity, class imbalance, and generalizability to clinical settings. We conclude by recommending the integration of multimodal data, semisupervised learning, and rigorous external validation to advance toward deployable diagnostic tools. This survey also provides a comprehensive roadmap for researchers and clinicians striving to harness AI for reliable hematologic cancer detection.</p>","PeriodicalId":22985,"journal":{"name":"The Scientific World Journal","volume":"2025 ","pages":"1671766"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12103971/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advancements in Hematologic Malignancy Detection: A Comprehensive Survey of Methodologies and Emerging Trends.\",\"authors\":\"Rajashree Nambiar, Ranjith Bhat, Balachandra Achar H V\",\"doi\":\"10.1155/tswj/1671766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The investigation and diagnosis of hematologic malignancy using blood cell image analysis are major and emerging subjects that lie at the intersection of artificial intelligence and medical research. This survey systematically examines the state-of-the-art in blood cancer detection through image-based analysis, aimed at identifying the most effective computational strategies and highlighting emerging trends. This review focuses on three principal objectives, namely, to categorize and compare traditional machine learning (ML), deep learning (DL), and hybrid learning approaches; to evaluate performance metrics such as accuracy, precision, recall, and area under the ROC curve; and to identify methodological gaps and propose directions for future research. Methodologically, we organize the literature by categorizing the malignancy types-leukemia, lymphoma, and multiple myeloma-and particularizing the preprocessing steps, feature extraction techniques, network architectures, and ensemble strategies employed. For ML methods, we discuss classical classifiers including support vector machines and random forests; for DL, we analyze convolutional neural networks (e.g., AlexNet, VGG, and ResNet) and transformer-based models; and for hybrid systems, we examine combinations of CNNs with attention mechanisms or traditional classifiers. Our synthesis reveals that DL models consistently outperform ML baselines, achieving classification accuracies above 95% in benchmark datasets, with hybrid models pushing peak accuracy to 99.7%. However, challenges remain in data scarcity, class imbalance, and generalizability to clinical settings. We conclude by recommending the integration of multimodal data, semisupervised learning, and rigorous external validation to advance toward deployable diagnostic tools. This survey also provides a comprehensive roadmap for researchers and clinicians striving to harness AI for reliable hematologic cancer detection.</p>\",\"PeriodicalId\":22985,\"journal\":{\"name\":\"The Scientific World Journal\",\"volume\":\"2025 \",\"pages\":\"1671766\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12103971/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Scientific World Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/tswj/1671766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Scientific World Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/tswj/1671766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
Advancements in Hematologic Malignancy Detection: A Comprehensive Survey of Methodologies and Emerging Trends.
The investigation and diagnosis of hematologic malignancy using blood cell image analysis are major and emerging subjects that lie at the intersection of artificial intelligence and medical research. This survey systematically examines the state-of-the-art in blood cancer detection through image-based analysis, aimed at identifying the most effective computational strategies and highlighting emerging trends. This review focuses on three principal objectives, namely, to categorize and compare traditional machine learning (ML), deep learning (DL), and hybrid learning approaches; to evaluate performance metrics such as accuracy, precision, recall, and area under the ROC curve; and to identify methodological gaps and propose directions for future research. Methodologically, we organize the literature by categorizing the malignancy types-leukemia, lymphoma, and multiple myeloma-and particularizing the preprocessing steps, feature extraction techniques, network architectures, and ensemble strategies employed. For ML methods, we discuss classical classifiers including support vector machines and random forests; for DL, we analyze convolutional neural networks (e.g., AlexNet, VGG, and ResNet) and transformer-based models; and for hybrid systems, we examine combinations of CNNs with attention mechanisms or traditional classifiers. Our synthesis reveals that DL models consistently outperform ML baselines, achieving classification accuracies above 95% in benchmark datasets, with hybrid models pushing peak accuracy to 99.7%. However, challenges remain in data scarcity, class imbalance, and generalizability to clinical settings. We conclude by recommending the integration of multimodal data, semisupervised learning, and rigorous external validation to advance toward deployable diagnostic tools. This survey also provides a comprehensive roadmap for researchers and clinicians striving to harness AI for reliable hematologic cancer detection.
期刊介绍:
The Scientific World Journal is a peer-reviewed, Open Access journal that publishes original research, reviews, and clinical studies covering a wide range of subjects in science, technology, and medicine. The journal is divided into 81 subject areas.