Angelina S Pavlets, Elizaveta A Moguchikh, Ilya V Pankov, Yana V Astravukh, Sergey V Belenov, Anastasia A Alekseenko
{"title":"氧还原反应的增强型电催化剂:来自加速应力测试和IL-TEM分析的见解。","authors":"Angelina S Pavlets, Elizaveta A Moguchikh, Ilya V Pankov, Yana V Astravukh, Sergey V Belenov, Anastasia A Alekseenko","doi":"10.3390/nano15100776","DOIUrl":null,"url":null,"abstract":"<p><p>This report introduces a high-performance bimetallic electrocatalyst for the oxygen reduction reaction (ORR) featuring a 20 wt.% platinum content. The PtCu-based catalyst combines de-alloyed nanoparticles (NPs) supported on nitrogen-doped carbon. Enhanced uniformity in NP distribution significantly boosts the catalyst performance. Nitrogen-doped carbon provides active centers for NP deposition, which is confirmed by HAADF-STEM and EDX. The PtCu/CN catalyst achieves over 5.6 times the ORR mass activity and two times the stability under pulse cycling compared to commercial Pt/C. Uniquely, the study examines bimetallic NPs and local nano-sites before and after stress testing using IL-TEM. In situ analysis of PtCu/CN microstructure revealed two primary degradation mechanisms, (i) partial dissolution of NPs and (ii) NP agglomeration, with the C-N support significantly mitigating these effects through strong NP-support interactions. The findings underscore the prospects of bimetallic PtCu catalysts with nitrogen-doped support by showcasing exceptional ORR activity and durability.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 10","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12114201/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhanced Electrocatalysts for Oxygen Reduction Reaction: Insights from Accelerated Stress Testing and IL-TEM Analysis.\",\"authors\":\"Angelina S Pavlets, Elizaveta A Moguchikh, Ilya V Pankov, Yana V Astravukh, Sergey V Belenov, Anastasia A Alekseenko\",\"doi\":\"10.3390/nano15100776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This report introduces a high-performance bimetallic electrocatalyst for the oxygen reduction reaction (ORR) featuring a 20 wt.% platinum content. The PtCu-based catalyst combines de-alloyed nanoparticles (NPs) supported on nitrogen-doped carbon. Enhanced uniformity in NP distribution significantly boosts the catalyst performance. Nitrogen-doped carbon provides active centers for NP deposition, which is confirmed by HAADF-STEM and EDX. The PtCu/CN catalyst achieves over 5.6 times the ORR mass activity and two times the stability under pulse cycling compared to commercial Pt/C. Uniquely, the study examines bimetallic NPs and local nano-sites before and after stress testing using IL-TEM. In situ analysis of PtCu/CN microstructure revealed two primary degradation mechanisms, (i) partial dissolution of NPs and (ii) NP agglomeration, with the C-N support significantly mitigating these effects through strong NP-support interactions. The findings underscore the prospects of bimetallic PtCu catalysts with nitrogen-doped support by showcasing exceptional ORR activity and durability.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"15 10\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12114201/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano15100776\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15100776","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced Electrocatalysts for Oxygen Reduction Reaction: Insights from Accelerated Stress Testing and IL-TEM Analysis.
This report introduces a high-performance bimetallic electrocatalyst for the oxygen reduction reaction (ORR) featuring a 20 wt.% platinum content. The PtCu-based catalyst combines de-alloyed nanoparticles (NPs) supported on nitrogen-doped carbon. Enhanced uniformity in NP distribution significantly boosts the catalyst performance. Nitrogen-doped carbon provides active centers for NP deposition, which is confirmed by HAADF-STEM and EDX. The PtCu/CN catalyst achieves over 5.6 times the ORR mass activity and two times the stability under pulse cycling compared to commercial Pt/C. Uniquely, the study examines bimetallic NPs and local nano-sites before and after stress testing using IL-TEM. In situ analysis of PtCu/CN microstructure revealed two primary degradation mechanisms, (i) partial dissolution of NPs and (ii) NP agglomeration, with the C-N support significantly mitigating these effects through strong NP-support interactions. The findings underscore the prospects of bimetallic PtCu catalysts with nitrogen-doped support by showcasing exceptional ORR activity and durability.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.