中断的MOS信号会改变减数分裂细胞周期调节和卵子转录组。

IF 3.7 3区 生物学 Q1 DEVELOPMENTAL BIOLOGY
Reproduction Pub Date : 2025-06-09 Print Date: 2025-07-01 DOI:10.1530/REP-25-0156
Gisela Cairo, Olha Kholod, Olivia Palmer, Sophia Meytin, Brittany A Goods, Soni Lacefield
{"title":"中断的MOS信号会改变减数分裂细胞周期调节和卵子转录组。","authors":"Gisela Cairo, Olha Kholod, Olivia Palmer, Sophia Meytin, Brittany A Goods, Soni Lacefield","doi":"10.1530/REP-25-0156","DOIUrl":null,"url":null,"abstract":"<p><strong>In brief: </strong>Through the precise coordination of meiosis, the oocyte gives rise to a mature egg that is competent to support fertilization and initiate embryonic development. This study reveals that MOS signaling is critical for proper meiotic regulation and for maintaining the egg in a transcriptionally inactive state.</p><p><strong>Abstract: </strong>Mammalian female meiosis is tightly regulated to produce a developmentally competent egg. Oocytes enter meiosis in the fetal ovary and then arrest at prophase I until sexual maturation. Upon hormonal stimulation, a subset of oocytes resumes meiosis. Oocytes then complete meiosis I, enter metaphase II and arrest until fertilization, a process essential for egg competency. The MOS kinase is a key regulator of the metaphase II arrest, activating the MAPK signaling cascade. Loss of MOS in female mice disrupts the maintenance of the metaphase II arrest, with some eggs extruding two polar bodies and some dividing beyond anaphase II. To investigate the consequences of the Mos deletion, we performed live imaging and found that mos-/- eggs exhibit transient chromosome separation events in meiosis I, suggesting a role for MOS in coordinating the timing of meiotic divisions. Further analysis showed that new transcription is required for mos-/- eggs to undergo additional divisions but not for second polar body (PB) extrusion. Surprisingly, single-egg sequencing revealed extensive differences in gene expression between wild-type (WT) and mos-/- eggs, including those with only one PB. Many differentially expressed genes were involved in cell cycle regulation, including Aurka, Bub3 and Cdk7. Upregulated pathways included metabolism of RNA, transcription and neddylation. Furthermore, the gene expression profile of mos-/- eggs was markedly different from that of chemically activated WT eggs. Our findings demonstrate that MOS plays a crucial role in meiotic cell cycle regulation and helps ensure that the egg maintains the proper transcriptome necessary for developmental competence.</p>","PeriodicalId":21127,"journal":{"name":"Reproduction","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12239712/pdf/","citationCount":"0","resultStr":"{\"title\":\"Disrupted MOS signaling alters meiotic cell cycle regulation and the egg transcriptome.\",\"authors\":\"Gisela Cairo, Olha Kholod, Olivia Palmer, Sophia Meytin, Brittany A Goods, Soni Lacefield\",\"doi\":\"10.1530/REP-25-0156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>In brief: </strong>Through the precise coordination of meiosis, the oocyte gives rise to a mature egg that is competent to support fertilization and initiate embryonic development. This study reveals that MOS signaling is critical for proper meiotic regulation and for maintaining the egg in a transcriptionally inactive state.</p><p><strong>Abstract: </strong>Mammalian female meiosis is tightly regulated to produce a developmentally competent egg. Oocytes enter meiosis in the fetal ovary and then arrest at prophase I until sexual maturation. Upon hormonal stimulation, a subset of oocytes resumes meiosis. Oocytes then complete meiosis I, enter metaphase II and arrest until fertilization, a process essential for egg competency. The MOS kinase is a key regulator of the metaphase II arrest, activating the MAPK signaling cascade. Loss of MOS in female mice disrupts the maintenance of the metaphase II arrest, with some eggs extruding two polar bodies and some dividing beyond anaphase II. To investigate the consequences of the Mos deletion, we performed live imaging and found that mos-/- eggs exhibit transient chromosome separation events in meiosis I, suggesting a role for MOS in coordinating the timing of meiotic divisions. Further analysis showed that new transcription is required for mos-/- eggs to undergo additional divisions but not for second polar body (PB) extrusion. Surprisingly, single-egg sequencing revealed extensive differences in gene expression between wild-type (WT) and mos-/- eggs, including those with only one PB. Many differentially expressed genes were involved in cell cycle regulation, including Aurka, Bub3 and Cdk7. Upregulated pathways included metabolism of RNA, transcription and neddylation. Furthermore, the gene expression profile of mos-/- eggs was markedly different from that of chemically activated WT eggs. Our findings demonstrate that MOS plays a crucial role in meiotic cell cycle regulation and helps ensure that the egg maintains the proper transcriptome necessary for developmental competence.</p>\",\"PeriodicalId\":21127,\"journal\":{\"name\":\"Reproduction\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12239712/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reproduction\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1530/REP-25-0156\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1530/REP-25-0156","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

哺乳动物的雌性减数分裂受到严格的调控,以产生具有发育能力的卵子。卵母细胞在胎儿卵巢内进入减数分裂,然后在I前期停止,直到性成熟。在激素刺激下,一部分卵母细胞恢复减数分裂。然后卵母细胞完成减数分裂I,进入中期II,并停止直到受精,这是卵子能力的重要过程。MOS激酶是中期II阻滞的关键调节因子,激活MAPK信号级联。在雌性小鼠中,MOS的缺失破坏了中期停滞的维持,一些卵子挤出两个极体,一些卵子在后期II之后分裂。为了研究Mos缺失的后果,我们进行了实时成像,发现Mos -/-卵在减数分裂I中表现出短暂的染色体分离事件,这表明Mos在协调减数分裂的时间方面发挥了作用。进一步的分析表明,新的转录需要大多数/-卵进行额外的分裂,但不需要第二极体的挤压。令人惊讶的是,单卵测序揭示了野生型和多/多卵之间基因表达的广泛差异,包括那些只有一个极体的卵。许多差异表达基因参与细胞周期调控,包括Aurka、Bub3和Cdk7。上调的途径包括RNA代谢、转录和类化修饰。此外,mos-/-卵的基因表达谱与化学激活的野生型卵有显著差异。我们的研究结果表明,MOS在减数分裂细胞周期调节中起着至关重要的作用,并有助于确保卵子维持发育能力所需的适当转录组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disrupted MOS signaling alters meiotic cell cycle regulation and the egg transcriptome.

In brief: Through the precise coordination of meiosis, the oocyte gives rise to a mature egg that is competent to support fertilization and initiate embryonic development. This study reveals that MOS signaling is critical for proper meiotic regulation and for maintaining the egg in a transcriptionally inactive state.

Abstract: Mammalian female meiosis is tightly regulated to produce a developmentally competent egg. Oocytes enter meiosis in the fetal ovary and then arrest at prophase I until sexual maturation. Upon hormonal stimulation, a subset of oocytes resumes meiosis. Oocytes then complete meiosis I, enter metaphase II and arrest until fertilization, a process essential for egg competency. The MOS kinase is a key regulator of the metaphase II arrest, activating the MAPK signaling cascade. Loss of MOS in female mice disrupts the maintenance of the metaphase II arrest, with some eggs extruding two polar bodies and some dividing beyond anaphase II. To investigate the consequences of the Mos deletion, we performed live imaging and found that mos-/- eggs exhibit transient chromosome separation events in meiosis I, suggesting a role for MOS in coordinating the timing of meiotic divisions. Further analysis showed that new transcription is required for mos-/- eggs to undergo additional divisions but not for second polar body (PB) extrusion. Surprisingly, single-egg sequencing revealed extensive differences in gene expression between wild-type (WT) and mos-/- eggs, including those with only one PB. Many differentially expressed genes were involved in cell cycle regulation, including Aurka, Bub3 and Cdk7. Upregulated pathways included metabolism of RNA, transcription and neddylation. Furthermore, the gene expression profile of mos-/- eggs was markedly different from that of chemically activated WT eggs. Our findings demonstrate that MOS plays a crucial role in meiotic cell cycle regulation and helps ensure that the egg maintains the proper transcriptome necessary for developmental competence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reproduction
Reproduction 生物-发育生物学
CiteScore
7.40
自引率
2.60%
发文量
199
审稿时长
4-8 weeks
期刊介绍: Reproduction is the official journal of the Society of Reproduction and Fertility (SRF). It was formed in 2001 when the Society merged its two journals, the Journal of Reproduction and Fertility and Reviews of Reproduction. Reproduction publishes original research articles and topical reviews on the subject of reproductive and developmental biology, and reproductive medicine. The journal will consider publication of high-quality meta-analyses; these should be submitted to the research papers category. The journal considers studies in humans and all animal species, and will publish clinical studies if they advance our understanding of the underlying causes and/or mechanisms of disease. Scientific excellence and broad interest to our readership are the most important criteria during the peer review process. The journal publishes articles that make a clear advance in the field, whether of mechanistic, descriptive or technical focus. Articles that substantiate new or controversial reports are welcomed if they are noteworthy and advance the field. Topics include, but are not limited to, reproductive immunology, reproductive toxicology, stem cells, environmental effects on reproductive potential and health (eg obesity), extracellular vesicles, fertility preservation and epigenetic effects on reproductive and developmental processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信