肝自噬丧失通过谷氨酰胺依赖性糖异生损伤诱导α-细胞增殖。

IF 2.2 Q3 PHYSIOLOGY
Jesse N Velasco-Silva, Joseph L Wilkerson, Daniela Ramos, Hayden K Low, Faith Bowman, Kimberley J Evason, Sihem Boudina, William L Holland, Gregory S Ducker
{"title":"肝自噬丧失通过谷氨酰胺依赖性糖异生损伤诱导α-细胞增殖。","authors":"Jesse N Velasco-Silva, Joseph L Wilkerson, Daniela Ramos, Hayden K Low, Faith Bowman, Kimberley J Evason, Sihem Boudina, William L Holland, Gregory S Ducker","doi":"10.14814/phy2.70381","DOIUrl":null,"url":null,"abstract":"<p><p>Autophagy, the highly conserved process of protein and organelle degradation, is suppressed in the liver by obesity and metabolic dysfunction-associated fatty liver disease and associated with the development of insulin resistance. We generated adult liver-inducible ATG3 knockout mice (Atg3<sup>iLKO</sup>) to characterize pathways linking hepatic autophagy with metabolic homeostasis. Genetic loss of hepatic autophagy leads to a reduction in 16-h fasted glucose levels, a decrease in endogenous glucose production rates, and an increase in serum amino acids across the fed and fasted states. These changes collectively reflect a loss of hepatic gluconeogenic enzyme activity and not a general inability to degrade amino acids in the liver. Increased circulating glutamine levels resulting from this are associated with an induction of α-cell hyperplasia, leading to constitutively elevated glucagon levels. However, the loss of hepatic gluconeogenesis renders these animals highly glucagon resistant. Collectively, our data demonstrate that loss of hepatic autophagy is sufficient to activate the hepatic α-islet cell axis, leading to hyperglucagonemia with impaired glucose production.</p>","PeriodicalId":20083,"journal":{"name":"Physiological Reports","volume":"13 10","pages":"e70381"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12106947/pdf/","citationCount":"0","resultStr":"{\"title\":\"Loss of hepatic autophagy induces α-cell proliferation through impaired glutamine-dependent gluconeogenesis.\",\"authors\":\"Jesse N Velasco-Silva, Joseph L Wilkerson, Daniela Ramos, Hayden K Low, Faith Bowman, Kimberley J Evason, Sihem Boudina, William L Holland, Gregory S Ducker\",\"doi\":\"10.14814/phy2.70381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Autophagy, the highly conserved process of protein and organelle degradation, is suppressed in the liver by obesity and metabolic dysfunction-associated fatty liver disease and associated with the development of insulin resistance. We generated adult liver-inducible ATG3 knockout mice (Atg3<sup>iLKO</sup>) to characterize pathways linking hepatic autophagy with metabolic homeostasis. Genetic loss of hepatic autophagy leads to a reduction in 16-h fasted glucose levels, a decrease in endogenous glucose production rates, and an increase in serum amino acids across the fed and fasted states. These changes collectively reflect a loss of hepatic gluconeogenic enzyme activity and not a general inability to degrade amino acids in the liver. Increased circulating glutamine levels resulting from this are associated with an induction of α-cell hyperplasia, leading to constitutively elevated glucagon levels. However, the loss of hepatic gluconeogenesis renders these animals highly glucagon resistant. Collectively, our data demonstrate that loss of hepatic autophagy is sufficient to activate the hepatic α-islet cell axis, leading to hyperglucagonemia with impaired glucose production.</p>\",\"PeriodicalId\":20083,\"journal\":{\"name\":\"Physiological Reports\",\"volume\":\"13 10\",\"pages\":\"e70381\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12106947/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14814/phy2.70381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14814/phy2.70381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

自噬是高度保守的蛋白质和细胞器降解过程,在肝脏中被肥胖和代谢功能障碍相关的脂肪肝疾病抑制,并与胰岛素抵抗的发展相关。我们生成了成年肝诱导ATG3敲除小鼠(Atg3iLKO),以表征肝自噬与代谢稳态之间的联系途径。肝脏自噬的遗传缺失导致16小时空腹葡萄糖水平降低,内源性葡萄糖生成速率降低,血清氨基酸在喂食和禁食状态下增加。这些变化共同反映了肝脏糖异生酶活性的丧失,而不是肝脏中氨基酸降解能力的普遍丧失。由此引起的循环谷氨酰胺水平升高与α-细胞增生的诱导有关,导致胰高血糖素水平的组成性升高。然而,肝脏糖异生的丧失使这些动物对胰高血糖素具有高度抗性。总的来说,我们的数据表明,肝自噬的丧失足以激活肝α-胰岛细胞轴,导致高胰高血糖素血症和葡萄糖生成受损。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Loss of hepatic autophagy induces α-cell proliferation through impaired glutamine-dependent gluconeogenesis.

Autophagy, the highly conserved process of protein and organelle degradation, is suppressed in the liver by obesity and metabolic dysfunction-associated fatty liver disease and associated with the development of insulin resistance. We generated adult liver-inducible ATG3 knockout mice (Atg3iLKO) to characterize pathways linking hepatic autophagy with metabolic homeostasis. Genetic loss of hepatic autophagy leads to a reduction in 16-h fasted glucose levels, a decrease in endogenous glucose production rates, and an increase in serum amino acids across the fed and fasted states. These changes collectively reflect a loss of hepatic gluconeogenic enzyme activity and not a general inability to degrade amino acids in the liver. Increased circulating glutamine levels resulting from this are associated with an induction of α-cell hyperplasia, leading to constitutively elevated glucagon levels. However, the loss of hepatic gluconeogenesis renders these animals highly glucagon resistant. Collectively, our data demonstrate that loss of hepatic autophagy is sufficient to activate the hepatic α-islet cell axis, leading to hyperglucagonemia with impaired glucose production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiological Reports
Physiological Reports PHYSIOLOGY-
CiteScore
4.20
自引率
4.00%
发文量
374
审稿时长
9 weeks
期刊介绍: Physiological Reports is an online only, open access journal that will publish peer reviewed research across all areas of basic, translational, and clinical physiology and allied disciplines. Physiological Reports is a collaboration between The Physiological Society and the American Physiological Society, and is therefore in a unique position to serve the international physiology community through quick time to publication while upholding a quality standard of sound research that constitutes a useful contribution to the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信