个体化人工耳蜗植入最佳效果的解剖学考虑。

IF 1.9 3区 医学 Q3 CLINICAL NEUROLOGY
Otology & Neurotology Pub Date : 2025-08-01 Epub Date: 2025-05-15 DOI:10.1097/MAO.0000000000004520
Max E Timm, Emilio Avallone, Malena Timm, Rolf B Salcher, Niels Rudnik, Thomas Lenarz, Daniel Schurzig
{"title":"个体化人工耳蜗植入最佳效果的解剖学考虑。","authors":"Max E Timm, Emilio Avallone, Malena Timm, Rolf B Salcher, Niels Rudnik, Thomas Lenarz, Daniel Schurzig","doi":"10.1097/MAO.0000000000004520","DOIUrl":null,"url":null,"abstract":"<p><strong>Hypothesis: </strong>Machine learning models can assist with the selection of electrode arrays required for optimal insertion angles.</p><p><strong>Background: </strong>Cochlea implantation is a successful therapy in patients with severe to profound hearing loss. The effectiveness of a cochlea implant depends on precise insertion and positioning of electrode array within the cochlea, which is known for its variability in shape and size. Preoperative imaging like CT or MRI plays a significant role in evaluating cochlear anatomy and planning the surgical approach to optimize outcomes.</p><p><strong>Methods: </strong>In this study, preoperative and postoperative CT and CBCT data of 558 cochlea-implant patients were analyzed in terms of the influence of anatomical factors and insertion depth onto the resulting insertion angle.</p><p><strong>Conclusions: </strong>Machine learning models can predict insertion depths needed for optimal insertion angles, with performance improving by including cochlear dimensions in the models. A simple linear regression using just the insertion depth explained 88% of variability, whereas adding cochlear length or diameter and width further improved predictions up to 94%.</p>","PeriodicalId":19732,"journal":{"name":"Otology & Neurotology","volume":" ","pages":"e234-e242"},"PeriodicalIF":1.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anatomical Considerations for Achieving Optimized Outcomes in Individualized Cochlear Implantation.\",\"authors\":\"Max E Timm, Emilio Avallone, Malena Timm, Rolf B Salcher, Niels Rudnik, Thomas Lenarz, Daniel Schurzig\",\"doi\":\"10.1097/MAO.0000000000004520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Hypothesis: </strong>Machine learning models can assist with the selection of electrode arrays required for optimal insertion angles.</p><p><strong>Background: </strong>Cochlea implantation is a successful therapy in patients with severe to profound hearing loss. The effectiveness of a cochlea implant depends on precise insertion and positioning of electrode array within the cochlea, which is known for its variability in shape and size. Preoperative imaging like CT or MRI plays a significant role in evaluating cochlear anatomy and planning the surgical approach to optimize outcomes.</p><p><strong>Methods: </strong>In this study, preoperative and postoperative CT and CBCT data of 558 cochlea-implant patients were analyzed in terms of the influence of anatomical factors and insertion depth onto the resulting insertion angle.</p><p><strong>Conclusions: </strong>Machine learning models can predict insertion depths needed for optimal insertion angles, with performance improving by including cochlear dimensions in the models. A simple linear regression using just the insertion depth explained 88% of variability, whereas adding cochlear length or diameter and width further improved predictions up to 94%.</p>\",\"PeriodicalId\":19732,\"journal\":{\"name\":\"Otology & Neurotology\",\"volume\":\" \",\"pages\":\"e234-e242\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Otology & Neurotology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/MAO.0000000000004520\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Otology & Neurotology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MAO.0000000000004520","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

假设:机器学习模型可以帮助选择最佳插入角度所需的电极阵列。背景:人工耳蜗植入术是治疗重度至重度听力损失的有效方法。耳蜗具有形状和大小的可变性,其植入的有效性取决于电极阵列在耳蜗内的精确插入和定位。术前影像学如CT或MRI在评估耳蜗解剖和规划手术入路以优化结果方面起着重要作用。方法:本研究对558例人工耳蜗患者术前、术后CT及CBCT资料进行分析,分析解剖因素及植入深度对植入角度的影响。结论:机器学习模型可以预测最佳插入角度所需的插入深度,并通过在模型中加入耳蜗尺寸来提高性能。仅使用插入深度的简单线性回归解释了88%的变异性,而添加耳蜗长度或直径和宽度进一步将预测提高到94%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anatomical Considerations for Achieving Optimized Outcomes in Individualized Cochlear Implantation.

Hypothesis: Machine learning models can assist with the selection of electrode arrays required for optimal insertion angles.

Background: Cochlea implantation is a successful therapy in patients with severe to profound hearing loss. The effectiveness of a cochlea implant depends on precise insertion and positioning of electrode array within the cochlea, which is known for its variability in shape and size. Preoperative imaging like CT or MRI plays a significant role in evaluating cochlear anatomy and planning the surgical approach to optimize outcomes.

Methods: In this study, preoperative and postoperative CT and CBCT data of 558 cochlea-implant patients were analyzed in terms of the influence of anatomical factors and insertion depth onto the resulting insertion angle.

Conclusions: Machine learning models can predict insertion depths needed for optimal insertion angles, with performance improving by including cochlear dimensions in the models. A simple linear regression using just the insertion depth explained 88% of variability, whereas adding cochlear length or diameter and width further improved predictions up to 94%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Otology & Neurotology
Otology & Neurotology 医学-耳鼻喉科学
CiteScore
3.80
自引率
14.30%
发文量
509
审稿时长
3-6 weeks
期刊介绍: ​​​​​Otology & Neurotology publishes original articles relating to both clinical and basic science aspects of otology, neurotology, and cranial base surgery. As the foremost journal in its field, it has become the favored place for publishing the best of new science relating to the human ear and its diseases. The broadly international character of its contributing authors, editorial board, and readership provides the Journal its decidedly global perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信