多器官代谢组生物学年龄与心脏代谢状况和死亡风险有关。

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Filippos Anagnostakis, Sarah Ko, Mehrshad Saadatinia, Jingyue Wang, Christos Davatzikos, Junhao Wen
{"title":"多器官代谢组生物学年龄与心脏代谢状况和死亡风险有关。","authors":"Filippos Anagnostakis, Sarah Ko, Mehrshad Saadatinia, Jingyue Wang, Christos Davatzikos, Junhao Wen","doi":"10.1038/s41467-025-59964-z","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-organ biological aging clocks across different organ systems have been shown to predict human disease and mortality. Here, we extend this multi-organ framework to plasma metabolomics, developing five organ-specific metabolome-based biological age gaps (MetBAGs) using 107 plasma non-derivatized metabolites from 274,247 UK Biobank participants. Our age prediction models achieve a mean absolute error of approximately 6 years (0.25<r < 0.42). Crucially, including composite metabolites (e.g. sums or ratios of raw metabolites) results in poor generalizability to independent test data due to multicollinearity. Genome-wide associations identify 405 MetBAG-locus pairs (P < 5 × 10<sup>-8</sup>/5). Using SBayesS, we estimate the SNP-based heritability (0.09< <math> <msubsup><mrow><mi>h</mi></mrow> <mrow><mi>S</mi> <mi>N</mi> <mi>P</mi></mrow> <mrow><mn>2</mn></mrow> </msubsup> </math>  < 0.18), negative selection signatures (-0.93 < S < -0.76), and polygenicity (0.001<Pi < 0.003) for the 5 MetBAGs. Genetic correlation and Mendelian randomization analyses reveal potential causal links between the 5 MetBAGs and cardiometabolic conditions (e.g., metabolic disorders and hypertension). Integrating multi-organ and multi-omics features improves disease category and mortality predictions. The 5 MetBAGs extend existing biological aging clocks to study human aging and disease across multiple biological scales. All results are publicly available at https://labs-laboratory.com/medicine/ .</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"4871"},"PeriodicalIF":14.7000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-organ metabolome biological age implicates cardiometabolic conditions and mortality risk.\",\"authors\":\"Filippos Anagnostakis, Sarah Ko, Mehrshad Saadatinia, Jingyue Wang, Christos Davatzikos, Junhao Wen\",\"doi\":\"10.1038/s41467-025-59964-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multi-organ biological aging clocks across different organ systems have been shown to predict human disease and mortality. Here, we extend this multi-organ framework to plasma metabolomics, developing five organ-specific metabolome-based biological age gaps (MetBAGs) using 107 plasma non-derivatized metabolites from 274,247 UK Biobank participants. Our age prediction models achieve a mean absolute error of approximately 6 years (0.25<r < 0.42). Crucially, including composite metabolites (e.g. sums or ratios of raw metabolites) results in poor generalizability to independent test data due to multicollinearity. Genome-wide associations identify 405 MetBAG-locus pairs (P < 5 × 10<sup>-8</sup>/5). Using SBayesS, we estimate the SNP-based heritability (0.09< <math> <msubsup><mrow><mi>h</mi></mrow> <mrow><mi>S</mi> <mi>N</mi> <mi>P</mi></mrow> <mrow><mn>2</mn></mrow> </msubsup> </math>  < 0.18), negative selection signatures (-0.93 < S < -0.76), and polygenicity (0.001<Pi < 0.003) for the 5 MetBAGs. Genetic correlation and Mendelian randomization analyses reveal potential causal links between the 5 MetBAGs and cardiometabolic conditions (e.g., metabolic disorders and hypertension). Integrating multi-organ and multi-omics features improves disease category and mortality predictions. The 5 MetBAGs extend existing biological aging clocks to study human aging and disease across multiple biological scales. All results are publicly available at https://labs-laboratory.com/medicine/ .</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"16 1\",\"pages\":\"4871\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-59964-z\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59964-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

跨不同器官系统的多器官生物衰老时钟已被证明可以预测人类疾病和死亡。在这里,我们将这种多器官框架扩展到血浆代谢组学,使用来自274,247名UK Biobank参与者的107种血浆非衍生代谢物开发了5种基于器官特异性代谢组的生物年龄差距(MetBAGs)。我们的年龄预测模型的平均绝对误差约为6年(0.25-8/5)。利用SBayesS,我们估计了基于snp的遗传力(0.09< h SNP 2)
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multi-organ metabolome biological age implicates cardiometabolic conditions and mortality risk.

Multi-organ metabolome biological age implicates cardiometabolic conditions and mortality risk.

Multi-organ biological aging clocks across different organ systems have been shown to predict human disease and mortality. Here, we extend this multi-organ framework to plasma metabolomics, developing five organ-specific metabolome-based biological age gaps (MetBAGs) using 107 plasma non-derivatized metabolites from 274,247 UK Biobank participants. Our age prediction models achieve a mean absolute error of approximately 6 years (0.25-8/5). Using SBayesS, we estimate the SNP-based heritability (0.09< h S N P 2  < 0.18), negative selection signatures (-0.93 < S < -0.76), and polygenicity (0.001

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信