通过灰色关联分析和偏好选择指标,对深冷处理硬质合金刀具在AISI 1045钢车削上的应用进行了研究。

IF 3.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
P Raja, M Sakthivel, T Satish Kumar, Jana Petrů, Kanak Kalita
{"title":"通过灰色关联分析和偏好选择指标,对深冷处理硬质合金刀具在AISI 1045钢车削上的应用进行了研究。","authors":"P Raja, M Sakthivel, T Satish Kumar, Jana Petrů, Kanak Kalita","doi":"10.1038/s41598-025-02263-w","DOIUrl":null,"url":null,"abstract":"<p><p>Global competition and increasing environmental concerns have compelled manufacturing industries to reduce energy consumption and enhance product quality. This, in turn, helps increase the production rate. In this context, the machining performance is largely influenced by the selection of process parameters and the condition of the cutting tool. The present study is based on an experiment involving the use of an uncoated, deep cryogenically treated tungsten carbide tool for machining AISI 1045 steel. The outcomes were evaluated using Grey Relational Analysis (GRA) and the Preference Selection Index (PSI). Both ANOVA methods indicated that feed rate, cutting speed, the use of deep cryo-treated tools, and depth of cut had the most significant effects. The optimal parameter settings identified include a deep cryo-treated tool, a cutting speed of 120 m/min, a feed rate of 0.05 mm/rev, and a depth of cut of 1.00 mm. This approach demonstrated that the feed rate had the greatest influence on flank wear and surface roughness, both of which were also significantly affected by cutting speed and depth of cut. Moreover, the deep cryo-treated tool outperformed the untreated tool, resulting in reductions in surface roughness and flank wear by 17% and 7%, respectively. Deep Cryogenic Treatment (DCT) has thus shown promise in enhancing the performance of tungsten carbide cutting tools used in machining operations. This study specifically investigated the effect of DCT on tool wear and surface finish during the turning of AISI 1045 steel.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"18452"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep cryo treated tungsten carbide tools on AISI 1045 steel turning through grey relational analysis and preference selection index.\",\"authors\":\"P Raja, M Sakthivel, T Satish Kumar, Jana Petrů, Kanak Kalita\",\"doi\":\"10.1038/s41598-025-02263-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Global competition and increasing environmental concerns have compelled manufacturing industries to reduce energy consumption and enhance product quality. This, in turn, helps increase the production rate. In this context, the machining performance is largely influenced by the selection of process parameters and the condition of the cutting tool. The present study is based on an experiment involving the use of an uncoated, deep cryogenically treated tungsten carbide tool for machining AISI 1045 steel. The outcomes were evaluated using Grey Relational Analysis (GRA) and the Preference Selection Index (PSI). Both ANOVA methods indicated that feed rate, cutting speed, the use of deep cryo-treated tools, and depth of cut had the most significant effects. The optimal parameter settings identified include a deep cryo-treated tool, a cutting speed of 120 m/min, a feed rate of 0.05 mm/rev, and a depth of cut of 1.00 mm. This approach demonstrated that the feed rate had the greatest influence on flank wear and surface roughness, both of which were also significantly affected by cutting speed and depth of cut. Moreover, the deep cryo-treated tool outperformed the untreated tool, resulting in reductions in surface roughness and flank wear by 17% and 7%, respectively. Deep Cryogenic Treatment (DCT) has thus shown promise in enhancing the performance of tungsten carbide cutting tools used in machining operations. This study specifically investigated the effect of DCT on tool wear and surface finish during the turning of AISI 1045 steel.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"18452\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-02263-w\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-02263-w","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

全球竞争和日益增加的环境问题迫使制造业减少能源消耗和提高产品质量。这反过来又有助于提高生产率。在这种情况下,加工性能在很大程度上受到工艺参数选择和刀具条件的影响。本研究基于一项实验,涉及使用未涂覆的深度低温处理碳化钨刀具加工AISI 1045钢。采用灰色关联分析(GRA)和偏好选择指数(PSI)对结果进行评价。两种方差分析方法均表明,进给量、切削速度、深度冷冻刀具的使用和切削深度是影响最大的因素。确定的最佳参数设置包括深度冷冻处理刀具,切削速度为120 m/min,进给速度为0.05 mm/rev,切削深度为1.00 mm。该方法表明,进给量对齿面磨损和表面粗糙度的影响最大,这两者也受切削速度和切削深度的显著影响。此外,深度冷冻处理的刀具性能优于未处理的刀具,其表面粗糙度和侧面磨损分别降低了17%和7%。因此,深冷处理(DCT)在提高加工操作中使用的碳化钨刀具的性能方面显示出了希望。本研究专门研究了DCT对AISI 1045钢车削过程中刀具磨损和表面光洁度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep cryo treated tungsten carbide tools on AISI 1045 steel turning through grey relational analysis and preference selection index.

Global competition and increasing environmental concerns have compelled manufacturing industries to reduce energy consumption and enhance product quality. This, in turn, helps increase the production rate. In this context, the machining performance is largely influenced by the selection of process parameters and the condition of the cutting tool. The present study is based on an experiment involving the use of an uncoated, deep cryogenically treated tungsten carbide tool for machining AISI 1045 steel. The outcomes were evaluated using Grey Relational Analysis (GRA) and the Preference Selection Index (PSI). Both ANOVA methods indicated that feed rate, cutting speed, the use of deep cryo-treated tools, and depth of cut had the most significant effects. The optimal parameter settings identified include a deep cryo-treated tool, a cutting speed of 120 m/min, a feed rate of 0.05 mm/rev, and a depth of cut of 1.00 mm. This approach demonstrated that the feed rate had the greatest influence on flank wear and surface roughness, both of which were also significantly affected by cutting speed and depth of cut. Moreover, the deep cryo-treated tool outperformed the untreated tool, resulting in reductions in surface roughness and flank wear by 17% and 7%, respectively. Deep Cryogenic Treatment (DCT) has thus shown promise in enhancing the performance of tungsten carbide cutting tools used in machining operations. This study specifically investigated the effect of DCT on tool wear and surface finish during the turning of AISI 1045 steel.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信