{"title":"有机硝酸盐:提高锂/石墨氟化电池能量密度的电解质添加剂。","authors":"Junwei Xiao, Lingchen Kong, Yong Wang, Ziyue Zhao, Yu Li, Wei Feng","doi":"10.3390/nano15100758","DOIUrl":null,"url":null,"abstract":"<p><p>Li/graphite fluoride (Li/CF<i><sub>x</sub></i>) batteries display the highest energy densities among those of commercially available primary Li batteries but fail to satisfy the high-performance requirements of advanced applications. To address this drawback, two liquid organic dinitrates, namely, 1,4-butanediol dinitrate (BDE) and 2,2,3,3-tetrafluoro-1,4-butanediol dinitrate (TBD), were employed as high-energy energetic materials, and they were highly compatible with the electrolytes of Li/CF<i><sub>x</sub></i> batteries. The use of Super P electrodes confirmed that the reduction reaction mechanisms of both nitrate ester-based compounds delivered considerable specific capacities, associated with discharge potentials matching that of the Li/CF<i><sub>x</sub></i> battery. When considering the combined mass of the electrolyte and cathode as the active material, the overall energy densities of the Li/CF<i><sub>x</sub></i> batteries increased by 25.3% (TBD) and 20.8% (BDE), reaching 1005.50 and 969.1 Wh/kg, respectively. The superior performance of TBD was due to the synergistic effects of the high electronegativities and levels of steric hindrance of the F atoms. Moreover, the nanocrystal LiF particles generated by TBD induced crack formation within the fluorinated graphite, increasing the lithium-ion accessible surface area and enhancing its utilization efficiency. These combined factors enhanced the reactivity of TBD and facilitated its involvement in electrochemical reactions, thus improving the capacity of the battery. The developed strategy enables the facile, cost-effective enhancement of the capacities of Li/CF<i><sub>x</sub></i> batteries, paving the way for their practical use in energy-demanding devices.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 10","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12114438/pdf/","citationCount":"0","resultStr":"{\"title\":\"Organic Dinitrates: Electrolyte Additives That Increase the Energy Densities of Lithium/Graphite Fluoride Batteries.\",\"authors\":\"Junwei Xiao, Lingchen Kong, Yong Wang, Ziyue Zhao, Yu Li, Wei Feng\",\"doi\":\"10.3390/nano15100758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Li/graphite fluoride (Li/CF<i><sub>x</sub></i>) batteries display the highest energy densities among those of commercially available primary Li batteries but fail to satisfy the high-performance requirements of advanced applications. To address this drawback, two liquid organic dinitrates, namely, 1,4-butanediol dinitrate (BDE) and 2,2,3,3-tetrafluoro-1,4-butanediol dinitrate (TBD), were employed as high-energy energetic materials, and they were highly compatible with the electrolytes of Li/CF<i><sub>x</sub></i> batteries. The use of Super P electrodes confirmed that the reduction reaction mechanisms of both nitrate ester-based compounds delivered considerable specific capacities, associated with discharge potentials matching that of the Li/CF<i><sub>x</sub></i> battery. When considering the combined mass of the electrolyte and cathode as the active material, the overall energy densities of the Li/CF<i><sub>x</sub></i> batteries increased by 25.3% (TBD) and 20.8% (BDE), reaching 1005.50 and 969.1 Wh/kg, respectively. The superior performance of TBD was due to the synergistic effects of the high electronegativities and levels of steric hindrance of the F atoms. Moreover, the nanocrystal LiF particles generated by TBD induced crack formation within the fluorinated graphite, increasing the lithium-ion accessible surface area and enhancing its utilization efficiency. These combined factors enhanced the reactivity of TBD and facilitated its involvement in electrochemical reactions, thus improving the capacity of the battery. The developed strategy enables the facile, cost-effective enhancement of the capacities of Li/CF<i><sub>x</sub></i> batteries, paving the way for their practical use in energy-demanding devices.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"15 10\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12114438/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano15100758\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15100758","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Organic Dinitrates: Electrolyte Additives That Increase the Energy Densities of Lithium/Graphite Fluoride Batteries.
Li/graphite fluoride (Li/CFx) batteries display the highest energy densities among those of commercially available primary Li batteries but fail to satisfy the high-performance requirements of advanced applications. To address this drawback, two liquid organic dinitrates, namely, 1,4-butanediol dinitrate (BDE) and 2,2,3,3-tetrafluoro-1,4-butanediol dinitrate (TBD), were employed as high-energy energetic materials, and they were highly compatible with the electrolytes of Li/CFx batteries. The use of Super P electrodes confirmed that the reduction reaction mechanisms of both nitrate ester-based compounds delivered considerable specific capacities, associated with discharge potentials matching that of the Li/CFx battery. When considering the combined mass of the electrolyte and cathode as the active material, the overall energy densities of the Li/CFx batteries increased by 25.3% (TBD) and 20.8% (BDE), reaching 1005.50 and 969.1 Wh/kg, respectively. The superior performance of TBD was due to the synergistic effects of the high electronegativities and levels of steric hindrance of the F atoms. Moreover, the nanocrystal LiF particles generated by TBD induced crack formation within the fluorinated graphite, increasing the lithium-ion accessible surface area and enhancing its utilization efficiency. These combined factors enhanced the reactivity of TBD and facilitated its involvement in electrochemical reactions, thus improving the capacity of the battery. The developed strategy enables the facile, cost-effective enhancement of the capacities of Li/CFx batteries, paving the way for their practical use in energy-demanding devices.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.