{"title":"范德华铁磁单层中自旋波的非玻色子阻尼。","authors":"Michael G Cottam, Bushra Hussain","doi":"10.3390/nano15100768","DOIUrl":null,"url":null,"abstract":"<p><p>The spin wave renormalization processes in two-dimensional van der Waals ferromagnetic monolayers are investigated using an established non-bosonic diagram technique based on the drone-fermion perturbation method. The aim is to evaluate the damping of the long-wavelength spin wave modes at temperatures below the Curie temperature. In addition to the multi-magnon scattering processes, which typically dominate at low temperatures, an additional mechanism is found here that becomes important at elevated temperatures. This spin disorder damping mechanism, which was mainly studied previously in bulk magnetic materials and thicker films, features a spin wave or magnon being scattered by the magnetic disorder that is present when a longitudinal spin component undergoes large thermal fluctuations. The magnetic ordering in the monolayers is stabilized by an out-of-plane single-ion or Ising-type anisotropy, which influences the damping properties. Numerical results are derived for monolayer films of the van der Waals ferromagnet Cr<sub>2</sub>Ge<sub>2</sub>Te<sub>6</sub>.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 10","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113659/pdf/","citationCount":"0","resultStr":"{\"title\":\"Non-Bosonic Damping of Spin Waves in van der Waals Ferromagnetic Monolayers.\",\"authors\":\"Michael G Cottam, Bushra Hussain\",\"doi\":\"10.3390/nano15100768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The spin wave renormalization processes in two-dimensional van der Waals ferromagnetic monolayers are investigated using an established non-bosonic diagram technique based on the drone-fermion perturbation method. The aim is to evaluate the damping of the long-wavelength spin wave modes at temperatures below the Curie temperature. In addition to the multi-magnon scattering processes, which typically dominate at low temperatures, an additional mechanism is found here that becomes important at elevated temperatures. This spin disorder damping mechanism, which was mainly studied previously in bulk magnetic materials and thicker films, features a spin wave or magnon being scattered by the magnetic disorder that is present when a longitudinal spin component undergoes large thermal fluctuations. The magnetic ordering in the monolayers is stabilized by an out-of-plane single-ion or Ising-type anisotropy, which influences the damping properties. Numerical results are derived for monolayer films of the van der Waals ferromagnet Cr<sub>2</sub>Ge<sub>2</sub>Te<sub>6</sub>.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"15 10\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113659/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano15100768\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15100768","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
利用基于非玻色子-费米子摄动方法的非玻色子图技术研究了二维范德华铁磁单层中的自旋波重整化过程。目的是评估在低于居里温度的温度下长波长自旋波模式的阻尼。除了通常在低温下占主导地位的多磁振子散射过程外,这里还发现了一个在高温下变得重要的附加机制。这种自旋无序阻尼机制,以前主要是在块状磁性材料和较厚的薄膜中研究的,其特征是当纵向自旋分量经历较大的热波动时,自旋波或磁振子被磁无序散射。单离子或ising型各向异性稳定了单层材料的磁有序,影响了材料的阻尼特性。推导了van der Waals铁磁体Cr2Ge2Te6的单层膜的数值结果。
Non-Bosonic Damping of Spin Waves in van der Waals Ferromagnetic Monolayers.
The spin wave renormalization processes in two-dimensional van der Waals ferromagnetic monolayers are investigated using an established non-bosonic diagram technique based on the drone-fermion perturbation method. The aim is to evaluate the damping of the long-wavelength spin wave modes at temperatures below the Curie temperature. In addition to the multi-magnon scattering processes, which typically dominate at low temperatures, an additional mechanism is found here that becomes important at elevated temperatures. This spin disorder damping mechanism, which was mainly studied previously in bulk magnetic materials and thicker films, features a spin wave or magnon being scattered by the magnetic disorder that is present when a longitudinal spin component undergoes large thermal fluctuations. The magnetic ordering in the monolayers is stabilized by an out-of-plane single-ion or Ising-type anisotropy, which influences the damping properties. Numerical results are derived for monolayer films of the van der Waals ferromagnet Cr2Ge2Te6.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.