{"title":"通过降低膜张力实现膜电穿孔的快速上升电脉冲。","authors":"Ping Ye, Lulu Huang, Kuiwen Zhao","doi":"10.3390/membranes15050151","DOIUrl":null,"url":null,"abstract":"<p><p>Membrane electroporation is an emerging minimally invasive ablation technique being rapidly applied in the ablation treatment of tumors and heart conditions. Different rise times of electric fields lead to variations in the distribution and duration of electric field strength on the cell membrane. This study investigated the effect of the electric field's rise time on membrane electroporation characteristics using molecular dynamics simulations. The results showed that fast-rising electrical pulses can significantly reduce the membrane tension induced by the Coulomb force within a short period of time and lead to a trend of the electric field angle distribution towards smaller values below 45°, thereby effectively promoting the pore formation process. Optimizing the electric field's rise time is an effective electroporation ablation strategy, potentially improving the efficacy of clinical cancer treatment.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 5","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113182/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fast-Rising Electric Pulses by Reducing Membrane Tension for Efficient Membrane Electroporation.\",\"authors\":\"Ping Ye, Lulu Huang, Kuiwen Zhao\",\"doi\":\"10.3390/membranes15050151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Membrane electroporation is an emerging minimally invasive ablation technique being rapidly applied in the ablation treatment of tumors and heart conditions. Different rise times of electric fields lead to variations in the distribution and duration of electric field strength on the cell membrane. This study investigated the effect of the electric field's rise time on membrane electroporation characteristics using molecular dynamics simulations. The results showed that fast-rising electrical pulses can significantly reduce the membrane tension induced by the Coulomb force within a short period of time and lead to a trend of the electric field angle distribution towards smaller values below 45°, thereby effectively promoting the pore formation process. Optimizing the electric field's rise time is an effective electroporation ablation strategy, potentially improving the efficacy of clinical cancer treatment.</p>\",\"PeriodicalId\":18410,\"journal\":{\"name\":\"Membranes\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113182/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/membranes15050151\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes15050151","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Fast-Rising Electric Pulses by Reducing Membrane Tension for Efficient Membrane Electroporation.
Membrane electroporation is an emerging minimally invasive ablation technique being rapidly applied in the ablation treatment of tumors and heart conditions. Different rise times of electric fields lead to variations in the distribution and duration of electric field strength on the cell membrane. This study investigated the effect of the electric field's rise time on membrane electroporation characteristics using molecular dynamics simulations. The results showed that fast-rising electrical pulses can significantly reduce the membrane tension induced by the Coulomb force within a short period of time and lead to a trend of the electric field angle distribution towards smaller values below 45°, thereby effectively promoting the pore formation process. Optimizing the electric field's rise time is an effective electroporation ablation strategy, potentially improving the efficacy of clinical cancer treatment.
MembranesChemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍:
Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.