{"title":"冷刺激下肠上皮源性外泌体促进脂肪产热。","authors":"Xue Han, Tiange Feng, Yaxu Yang, Ziming Zhu, Fangyu Shao, Lijun Sun, Yue Yin, Weizhen Zhang","doi":"10.3390/metabo15050324","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>: Whether intestinal epithelial cells can regulate distant adipose tissue remains a mystery. <b>Methods</b>: Cold-stimulated intestinal epithelial cell-derived exosomes (Cold IEC-Exo) play a pivotal role in enhancing adipose thermogenesis and metabolic homeostasis, as demonstrated in this study. <b>Results</b>: IEC-Exo can accumulate in adipose tissue. Compared with IEC-Exo derived from room temperature mice (RT IEC-Exo), Cold IEC-Exo significantly enhanced the thermogenesis of adipose. In vitro, Cold IEC-Exo directly stimulated thermogenesis in primary adipocytes by elevating oxygen consumption rate, proton leak, and fatty acid uptake, with no effect on glucose uptake. Small RNA sequencing identified miR-674-3p as a key mediator enriched in Cold IEC-Exo. miR-674-3p mimicry replicated Cold IEC-Exo effects, augmenting <i>Ucp1</i> expression, mitochondrial uncoupling, and fatty acid utilization in adipocytes. Local overexpression of miR-674-3p in BAT and sWAT via AAV in vivo enhanced thermogenesis and attenuated diet-induced glucose intolerance. <b>Conclusions</b>: These findings establish that Cold IEC-Exo, via miR-674-3p transfer, drive adipose thermogenic activation and mitigate metabolic dysfunction, highlighting their therapeutic potential in obesity-related disorders.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113151/pdf/","citationCount":"0","resultStr":"{\"title\":\"Intestinal Epithelial-Derived Exosomes Under Cold Stimulation Promote Adipose Thermogenesis.\",\"authors\":\"Xue Han, Tiange Feng, Yaxu Yang, Ziming Zhu, Fangyu Shao, Lijun Sun, Yue Yin, Weizhen Zhang\",\"doi\":\"10.3390/metabo15050324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background</b>: Whether intestinal epithelial cells can regulate distant adipose tissue remains a mystery. <b>Methods</b>: Cold-stimulated intestinal epithelial cell-derived exosomes (Cold IEC-Exo) play a pivotal role in enhancing adipose thermogenesis and metabolic homeostasis, as demonstrated in this study. <b>Results</b>: IEC-Exo can accumulate in adipose tissue. Compared with IEC-Exo derived from room temperature mice (RT IEC-Exo), Cold IEC-Exo significantly enhanced the thermogenesis of adipose. In vitro, Cold IEC-Exo directly stimulated thermogenesis in primary adipocytes by elevating oxygen consumption rate, proton leak, and fatty acid uptake, with no effect on glucose uptake. Small RNA sequencing identified miR-674-3p as a key mediator enriched in Cold IEC-Exo. miR-674-3p mimicry replicated Cold IEC-Exo effects, augmenting <i>Ucp1</i> expression, mitochondrial uncoupling, and fatty acid utilization in adipocytes. Local overexpression of miR-674-3p in BAT and sWAT via AAV in vivo enhanced thermogenesis and attenuated diet-induced glucose intolerance. <b>Conclusions</b>: These findings establish that Cold IEC-Exo, via miR-674-3p transfer, drive adipose thermogenic activation and mitigate metabolic dysfunction, highlighting their therapeutic potential in obesity-related disorders.</p>\",\"PeriodicalId\":18496,\"journal\":{\"name\":\"Metabolites\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113151/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolites\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/metabo15050324\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15050324","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Intestinal Epithelial-Derived Exosomes Under Cold Stimulation Promote Adipose Thermogenesis.
Background: Whether intestinal epithelial cells can regulate distant adipose tissue remains a mystery. Methods: Cold-stimulated intestinal epithelial cell-derived exosomes (Cold IEC-Exo) play a pivotal role in enhancing adipose thermogenesis and metabolic homeostasis, as demonstrated in this study. Results: IEC-Exo can accumulate in adipose tissue. Compared with IEC-Exo derived from room temperature mice (RT IEC-Exo), Cold IEC-Exo significantly enhanced the thermogenesis of adipose. In vitro, Cold IEC-Exo directly stimulated thermogenesis in primary adipocytes by elevating oxygen consumption rate, proton leak, and fatty acid uptake, with no effect on glucose uptake. Small RNA sequencing identified miR-674-3p as a key mediator enriched in Cold IEC-Exo. miR-674-3p mimicry replicated Cold IEC-Exo effects, augmenting Ucp1 expression, mitochondrial uncoupling, and fatty acid utilization in adipocytes. Local overexpression of miR-674-3p in BAT and sWAT via AAV in vivo enhanced thermogenesis and attenuated diet-induced glucose intolerance. Conclusions: These findings establish that Cold IEC-Exo, via miR-674-3p transfer, drive adipose thermogenic activation and mitigate metabolic dysfunction, highlighting their therapeutic potential in obesity-related disorders.
MetabolitesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍:
Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.