辅酶Q10增强线粒体样膜抗淀粉样肽的弹性。

IF 3.3 4区 工程技术 Q2 CHEMISTRY, PHYSICAL
Raina Marie Seychell, Adam El Saghir, Gianluca Farrugia, Neville Vassallo
{"title":"辅酶Q10增强线粒体样膜抗淀粉样肽的弹性。","authors":"Raina Marie Seychell, Adam El Saghir, Gianluca Farrugia, Neville Vassallo","doi":"10.3390/membranes15050148","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria possess a double-membrane envelope which is susceptible to insult by pathogenic intracellular aggregates of amyloid-forming peptides, such as the amyloid-beta (1-42) (Aβ42) peptide and the human islet amyloid polypeptide (hIAPP). The molecular composition of membranes plays a pivotal role in regulating peptide aggregation and cytotoxicity. Therefore, we hypothesized that modifying the physicochemical properties of mitochondrial model membranes with a small molecule might act as a countermeasure against the formation of, and damage by, membrane-active amyloid peptides. To investigate this, we inserted the natural ubiquinone Coenzyme Q10 (CoQ10) in model mito-mimetic lipid vesicles, and studied how they interacted with Aβ42 and hIAPP peptide monomers and oligomers. Our results demonstrate that the membrane incorporation of CoQ10 significantly attenuated fibrillization of the peptides, whilst also making the membranes more resilient against peptide-induced permeabilization. Furthermore, these protective effects were linked with the ability of CoQ10 to enhance membrane packing in the inner acyl chain region, which increased the mechanical stability of the vesicle membranes. Based on our collective observations, we propose that mitochondrial resilience against toxic biomolecules implicit in protein misfolding disorders such as Alzheimer's disease and type-2 diabetes, could potentially be enhanced by increasing CoQ10 levels within mitochondria.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 5","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113080/pdf/","citationCount":"0","resultStr":"{\"title\":\"Coenzyme Q10 Enhances Resilience of Mitochondrial-like Membranes Against Amyloidogenic Peptides.\",\"authors\":\"Raina Marie Seychell, Adam El Saghir, Gianluca Farrugia, Neville Vassallo\",\"doi\":\"10.3390/membranes15050148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondria possess a double-membrane envelope which is susceptible to insult by pathogenic intracellular aggregates of amyloid-forming peptides, such as the amyloid-beta (1-42) (Aβ42) peptide and the human islet amyloid polypeptide (hIAPP). The molecular composition of membranes plays a pivotal role in regulating peptide aggregation and cytotoxicity. Therefore, we hypothesized that modifying the physicochemical properties of mitochondrial model membranes with a small molecule might act as a countermeasure against the formation of, and damage by, membrane-active amyloid peptides. To investigate this, we inserted the natural ubiquinone Coenzyme Q10 (CoQ10) in model mito-mimetic lipid vesicles, and studied how they interacted with Aβ42 and hIAPP peptide monomers and oligomers. Our results demonstrate that the membrane incorporation of CoQ10 significantly attenuated fibrillization of the peptides, whilst also making the membranes more resilient against peptide-induced permeabilization. Furthermore, these protective effects were linked with the ability of CoQ10 to enhance membrane packing in the inner acyl chain region, which increased the mechanical stability of the vesicle membranes. Based on our collective observations, we propose that mitochondrial resilience against toxic biomolecules implicit in protein misfolding disorders such as Alzheimer's disease and type-2 diabetes, could potentially be enhanced by increasing CoQ10 levels within mitochondria.</p>\",\"PeriodicalId\":18410,\"journal\":{\"name\":\"Membranes\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113080/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/membranes15050148\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes15050148","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

线粒体具有双膜包膜,易受淀粉样蛋白形成肽(如淀粉样蛋白β (1-42) (a - β42)肽和人胰岛淀粉样蛋白多肽(hIAPP))等致病性细胞内聚集物的损伤。细胞膜的分子组成在调节肽聚集和细胞毒性方面起着关键作用。因此,我们假设用小分子修饰线粒体模型膜的物理化学性质可能作为对抗膜活性淀粉样肽形成和损伤的对策。为此,我们将天然泛醌辅酶Q10 (CoQ10)插入到模拟有丝分裂的脂质囊泡中,并研究了它们如何与Aβ42和hIAPP肽单体和低聚物相互作用。我们的研究结果表明,CoQ10在膜上的掺入显著地减弱了肽的纤化,同时也使膜对肽诱导的渗透更有弹性。此外,这些保护作用与辅酶q10增强囊泡膜内酰基链区域的膜填充能力有关,这增加了囊泡膜的机械稳定性。基于我们的集体观察,我们提出线粒体对蛋白质错误折叠疾病(如阿尔茨海默病和2型糖尿病)中隐含的有毒生物分子的恢复能力可能通过增加线粒体内的CoQ10水平而增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coenzyme Q10 Enhances Resilience of Mitochondrial-like Membranes Against Amyloidogenic Peptides.

Mitochondria possess a double-membrane envelope which is susceptible to insult by pathogenic intracellular aggregates of amyloid-forming peptides, such as the amyloid-beta (1-42) (Aβ42) peptide and the human islet amyloid polypeptide (hIAPP). The molecular composition of membranes plays a pivotal role in regulating peptide aggregation and cytotoxicity. Therefore, we hypothesized that modifying the physicochemical properties of mitochondrial model membranes with a small molecule might act as a countermeasure against the formation of, and damage by, membrane-active amyloid peptides. To investigate this, we inserted the natural ubiquinone Coenzyme Q10 (CoQ10) in model mito-mimetic lipid vesicles, and studied how they interacted with Aβ42 and hIAPP peptide monomers and oligomers. Our results demonstrate that the membrane incorporation of CoQ10 significantly attenuated fibrillization of the peptides, whilst also making the membranes more resilient against peptide-induced permeabilization. Furthermore, these protective effects were linked with the ability of CoQ10 to enhance membrane packing in the inner acyl chain region, which increased the mechanical stability of the vesicle membranes. Based on our collective observations, we propose that mitochondrial resilience against toxic biomolecules implicit in protein misfolding disorders such as Alzheimer's disease and type-2 diabetes, could potentially be enhanced by increasing CoQ10 levels within mitochondria.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Membranes
Membranes Chemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍: Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信