喀麦隆番木瓜腐病真菌的形态、生理、生化和分子特征。

IF 4.2 2区 生物学 Q2 MICROBIOLOGY
Moussango Victor Davy, Voundi Olugu Steve, Tchabong Raymond Sammuel, Marie Ampères Bedine Boat, Ntah Ayong Moise, Anna Cazanevscaia Busuioc, Priscile Ebong Mbondi, Andreea Veronica Dediu Botezatu, Manz Koule Jules, Maria Daniela Ionica Mihaila, Rodica Mihaela Dinica, Sameza Modeste Lambert
{"title":"喀麦隆番木瓜腐病真菌的形态、生理、生化和分子特征。","authors":"Moussango Victor Davy, Voundi Olugu Steve, Tchabong Raymond Sammuel, Marie Ampères Bedine Boat, Ntah Ayong Moise, Anna Cazanevscaia Busuioc, Priscile Ebong Mbondi, Andreea Veronica Dediu Botezatu, Manz Koule Jules, Maria Daniela Ionica Mihaila, Rodica Mihaela Dinica, Sameza Modeste Lambert","doi":"10.3390/jof11050385","DOIUrl":null,"url":null,"abstract":"<p><p>Post-harvest decay of <i>Carica papaya</i> L. is the primary cause of deterioration in papaya quality and the low economic impact of this sector in Cameroon. Field surveys conducted by teams from the Ministry of Agriculture and Rural Development (MINADER) in Cameroon have primarily associated these decays with fungal attacks. However, to date, no methodological analysis has been conducted on the identification of these fungal agents. To reduce post-harvest losses, rapid detection of diseases is crucial for the application of effective management strategies. This study sought to identify the fungal agents associated with post-harvest decay of papaya <i>cv</i> Sunrise solo in Cameroon and to determine their physiological and biochemical growth characteristics. Isolation and pathogenicity tests were performed according to Koch's postulate. Molecular identification of isolates was achieved by amplification and sequencing of the ITS1 and ITS4 regions. Phylogenetic analysis was based on the substitution models corresponding to each fungal genus determined by jModeltest, according to the Akaike information criterion (AIC). Fungal explants of each identified species were subjected to variations in temperature, pH, water activity, and NaCl concentration. The ability to secrete hydrolytic enzymes was determined on specific media such as skimmed milk agar for protease, peptone agar for lipase, and carboxymethylcellulose for cellulase. These experiments allowed the identification of three fungi responsible for papaya fruit decay, namely <i>Colletotrichum gloeosporioides</i>, <i>Fusarium equiseti</i>, and <i>Lasiodiplodia theobromae</i>. All three pathogens had maximum mycelial growth at a temperature of 25 ± 2 °C, pH 6.5, NaCl concentration of 100 µM, and water activity (aw) equal to 0.98. The three fungal agents demonstrated a strong potential for secreting cellulases, lipases, and proteases, which they use as lytic enzymes to degrade papaya tissues. The relative enzymatic activity varied depending on the fungal pathogen as well as the type of enzyme secreted. This study is the first report of <i>F. equiseti</i> as a causal agent of papaya fruit decay in Cameroon.</p>","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"11 5","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12112994/pdf/","citationCount":"0","resultStr":"{\"title\":\"Morphological, Physiological, Biochemical, and Molecular Characterization of Fungal Species Associated with Papaya Rot in Cameroon.\",\"authors\":\"Moussango Victor Davy, Voundi Olugu Steve, Tchabong Raymond Sammuel, Marie Ampères Bedine Boat, Ntah Ayong Moise, Anna Cazanevscaia Busuioc, Priscile Ebong Mbondi, Andreea Veronica Dediu Botezatu, Manz Koule Jules, Maria Daniela Ionica Mihaila, Rodica Mihaela Dinica, Sameza Modeste Lambert\",\"doi\":\"10.3390/jof11050385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Post-harvest decay of <i>Carica papaya</i> L. is the primary cause of deterioration in papaya quality and the low economic impact of this sector in Cameroon. Field surveys conducted by teams from the Ministry of Agriculture and Rural Development (MINADER) in Cameroon have primarily associated these decays with fungal attacks. However, to date, no methodological analysis has been conducted on the identification of these fungal agents. To reduce post-harvest losses, rapid detection of diseases is crucial for the application of effective management strategies. This study sought to identify the fungal agents associated with post-harvest decay of papaya <i>cv</i> Sunrise solo in Cameroon and to determine their physiological and biochemical growth characteristics. Isolation and pathogenicity tests were performed according to Koch's postulate. Molecular identification of isolates was achieved by amplification and sequencing of the ITS1 and ITS4 regions. Phylogenetic analysis was based on the substitution models corresponding to each fungal genus determined by jModeltest, according to the Akaike information criterion (AIC). Fungal explants of each identified species were subjected to variations in temperature, pH, water activity, and NaCl concentration. The ability to secrete hydrolytic enzymes was determined on specific media such as skimmed milk agar for protease, peptone agar for lipase, and carboxymethylcellulose for cellulase. These experiments allowed the identification of three fungi responsible for papaya fruit decay, namely <i>Colletotrichum gloeosporioides</i>, <i>Fusarium equiseti</i>, and <i>Lasiodiplodia theobromae</i>. All three pathogens had maximum mycelial growth at a temperature of 25 ± 2 °C, pH 6.5, NaCl concentration of 100 µM, and water activity (aw) equal to 0.98. The three fungal agents demonstrated a strong potential for secreting cellulases, lipases, and proteases, which they use as lytic enzymes to degrade papaya tissues. The relative enzymatic activity varied depending on the fungal pathogen as well as the type of enzyme secreted. This study is the first report of <i>F. equiseti</i> as a causal agent of papaya fruit decay in Cameroon.</p>\",\"PeriodicalId\":15878,\"journal\":{\"name\":\"Journal of Fungi\",\"volume\":\"11 5\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12112994/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fungi\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/jof11050385\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof11050385","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在喀麦隆,番木瓜收获后的腐烂是导致番木瓜质量恶化和经济影响低的主要原因。喀麦隆农业和农村发展部(MINADER)小组进行的实地调查主要将这些腐烂与真菌攻击联系起来。然而,到目前为止,还没有对这些真菌病原体的鉴定进行方法学分析。为了减少收获后的损失,快速发现病害对于应用有效的管理战略至关重要。本研究旨在鉴定与喀麦隆旭日番木瓜采后腐烂相关的真菌制剂,并确定其生理生化生长特性。根据科赫假设进行分离和致病性试验。通过ITS1和ITS4区域的扩增和测序获得分离株的分子鉴定。根据赤池信息准则(Akaike information criterion, AIC),基于jModeltest确定的每个真菌属对应的替代模型进行系统发育分析。每种真菌外植体都受到温度、pH、水活度和NaCl浓度的影响。分泌水解酶的能力是在特定的培养基上测定的,如蛋白酶用脱脂乳琼脂,脂肪酶用蛋白胨琼脂,纤维素酶用羧甲基纤维素。这些实验鉴定出三种导致番木瓜果实腐烂的真菌,即炭疽菌(Colletotrichum gloeosporioides)、镰刀菌(Fusarium equiseti)和可可腐菌(Lasiodiplodia theobromae)。3种病原菌在温度为25±2℃、pH为6.5、NaCl浓度为100µM、水活度(aw)为0.98时菌丝生长达到最大值。这三种真菌制剂显示出分泌纤维素酶、脂肪酶和蛋白酶的强大潜力,它们被用作降解木瓜组织的裂解酶。相对酶活性根据真菌病原体和分泌酶的类型而变化。本研究是喀麦隆首次报道木叶蝉作为木瓜果实腐烂的致病因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Morphological, Physiological, Biochemical, and Molecular Characterization of Fungal Species Associated with Papaya Rot in Cameroon.

Post-harvest decay of Carica papaya L. is the primary cause of deterioration in papaya quality and the low economic impact of this sector in Cameroon. Field surveys conducted by teams from the Ministry of Agriculture and Rural Development (MINADER) in Cameroon have primarily associated these decays with fungal attacks. However, to date, no methodological analysis has been conducted on the identification of these fungal agents. To reduce post-harvest losses, rapid detection of diseases is crucial for the application of effective management strategies. This study sought to identify the fungal agents associated with post-harvest decay of papaya cv Sunrise solo in Cameroon and to determine their physiological and biochemical growth characteristics. Isolation and pathogenicity tests were performed according to Koch's postulate. Molecular identification of isolates was achieved by amplification and sequencing of the ITS1 and ITS4 regions. Phylogenetic analysis was based on the substitution models corresponding to each fungal genus determined by jModeltest, according to the Akaike information criterion (AIC). Fungal explants of each identified species were subjected to variations in temperature, pH, water activity, and NaCl concentration. The ability to secrete hydrolytic enzymes was determined on specific media such as skimmed milk agar for protease, peptone agar for lipase, and carboxymethylcellulose for cellulase. These experiments allowed the identification of three fungi responsible for papaya fruit decay, namely Colletotrichum gloeosporioides, Fusarium equiseti, and Lasiodiplodia theobromae. All three pathogens had maximum mycelial growth at a temperature of 25 ± 2 °C, pH 6.5, NaCl concentration of 100 µM, and water activity (aw) equal to 0.98. The three fungal agents demonstrated a strong potential for secreting cellulases, lipases, and proteases, which they use as lytic enzymes to degrade papaya tissues. The relative enzymatic activity varied depending on the fungal pathogen as well as the type of enzyme secreted. This study is the first report of F. equiseti as a causal agent of papaya fruit decay in Cameroon.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Fungi
Journal of Fungi Medicine-Microbiology (medical)
CiteScore
6.70
自引率
14.90%
发文量
1151
审稿时长
11 weeks
期刊介绍: Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信