具有轻度光热特性的多功能水凝胶通过靶向MRSA能量代谢促进糖尿病伤口修复。

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Qian Gao, Fangfang Hu, Zihan Chai, Caiyun Zheng, Wenhui Zhang, Ke Pu, Ziyi Yang, Yanni Zhang, Seeram Ramrkrishna, Xianglong Wu, Tingli Lu
{"title":"具有轻度光热特性的多功能水凝胶通过靶向MRSA能量代谢促进糖尿病伤口修复。","authors":"Qian Gao, Fangfang Hu, Zihan Chai, Caiyun Zheng, Wenhui Zhang, Ke Pu, Ziyi Yang, Yanni Zhang, Seeram Ramrkrishna, Xianglong Wu, Tingli Lu","doi":"10.1186/s12951-025-03451-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diabetic wound infections, exacerbated by multidrug-resistant pathogens like MRSA, remain a critical challenge due to biofilm persistence and dysregulated oxidative-inflammatory-metabolic crosstalk.</p><p><strong>Results: </strong>In this work, we engineered COG-Z@P200 hydrogel, a chitosan-based hydrogel integrating polydopamine-coated ZIF-8 nanoparticles, to synergize mild photothermal therapy (40-45 °C) with metabolic-immune reprogramming. Upon NIR irradiation, COG-Z@P200 disrupted MRSA through Zn<sup>2</sup>⁺-mediated membrane destabilization and localized hyperthermia, achieving >99.5% eradication via combined physical puncture and metabolic interference. Multi-omics analyses revealed suppression of glycolysis (eno, gap downregulation), TCA cycle arrested (sucC, sdhA, icd inhibition), and disruption of arginine biosynthesis (arcA, arcC, arcD downregulation), impairing biofilm formation and pathogenicity. Concurrent silencing of quorum sensing and virulence genes (agr, sec, lac, opp, sdrD) further destabilized MRSA, while upregulation of stress-response genes (yidD, nfsA, kdpA) indicated bacterial metabolic paralysis. In diabetic murine models, the hydrogel attenuated oxidative stress (DHE-confirmed ROS reduction), polarized macrophages to pro-healing M2 phenotypes (Arg-1⁺/TNF-α↓), and enhanced angiogenesis (VEGF/CD31↑) alongside aligned collagen deposition. This multifunctional action accelerated wound closure by 48% versus controls, outperforming clinical standards. By converging nanomaterial-enabled bactericidal strategies with host microenvironment recalibration, COG-Z@P200 hydrogel redefined diabetic wound management, offering an antibiotic-free solution against multidrug-resistant infections.</p><p><strong>Conclusion: </strong>Our work established a biomaterial paradigm that concurrently targets pathogen vulnerabilities and restores tissue homeostasis, addressing the multidimensional complexity of chronic wounds.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"380"},"PeriodicalIF":10.6000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105145/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multifunctional hydrogel with mild photothermal properties enhances diabetic wound repair by targeting MRSA energy metabolism.\",\"authors\":\"Qian Gao, Fangfang Hu, Zihan Chai, Caiyun Zheng, Wenhui Zhang, Ke Pu, Ziyi Yang, Yanni Zhang, Seeram Ramrkrishna, Xianglong Wu, Tingli Lu\",\"doi\":\"10.1186/s12951-025-03451-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Diabetic wound infections, exacerbated by multidrug-resistant pathogens like MRSA, remain a critical challenge due to biofilm persistence and dysregulated oxidative-inflammatory-metabolic crosstalk.</p><p><strong>Results: </strong>In this work, we engineered COG-Z@P200 hydrogel, a chitosan-based hydrogel integrating polydopamine-coated ZIF-8 nanoparticles, to synergize mild photothermal therapy (40-45 °C) with metabolic-immune reprogramming. Upon NIR irradiation, COG-Z@P200 disrupted MRSA through Zn<sup>2</sup>⁺-mediated membrane destabilization and localized hyperthermia, achieving >99.5% eradication via combined physical puncture and metabolic interference. Multi-omics analyses revealed suppression of glycolysis (eno, gap downregulation), TCA cycle arrested (sucC, sdhA, icd inhibition), and disruption of arginine biosynthesis (arcA, arcC, arcD downregulation), impairing biofilm formation and pathogenicity. Concurrent silencing of quorum sensing and virulence genes (agr, sec, lac, opp, sdrD) further destabilized MRSA, while upregulation of stress-response genes (yidD, nfsA, kdpA) indicated bacterial metabolic paralysis. In diabetic murine models, the hydrogel attenuated oxidative stress (DHE-confirmed ROS reduction), polarized macrophages to pro-healing M2 phenotypes (Arg-1⁺/TNF-α↓), and enhanced angiogenesis (VEGF/CD31↑) alongside aligned collagen deposition. This multifunctional action accelerated wound closure by 48% versus controls, outperforming clinical standards. By converging nanomaterial-enabled bactericidal strategies with host microenvironment recalibration, COG-Z@P200 hydrogel redefined diabetic wound management, offering an antibiotic-free solution against multidrug-resistant infections.</p><p><strong>Conclusion: </strong>Our work established a biomaterial paradigm that concurrently targets pathogen vulnerabilities and restores tissue homeostasis, addressing the multidimensional complexity of chronic wounds.</p>\",\"PeriodicalId\":16383,\"journal\":{\"name\":\"Journal of Nanobiotechnology\",\"volume\":\"23 1\",\"pages\":\"380\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105145/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12951-025-03451-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03451-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:由于生物膜持久性和氧化-炎症-代谢串扰失调,糖尿病伤口感染,如MRSA等多重耐药病原体加剧,仍然是一个关键的挑战。结果:在这项工作中,我们设计了COG-Z@P200水凝胶,一种基于壳聚糖的水凝胶,整合了聚多巴胺包被的ZIF-8纳米颗粒,以协同轻度光热疗法(40-45°C)与代谢免疫重编程。在近红外照射下,COG-Z@P200通过Zn2 +介导的膜失稳和局部高温破坏MRSA,通过物理穿刺和代谢干扰相结合,实现>99.5%的根除。多组学分析显示糖酵解抑制(no, gap下调),TCA循环阻滞(sucC, sdhA, icd抑制),精氨酸生物合成中断(arcA, arcC, arcD下调),损害生物膜形成和致病性。群体感应和毒力基因(agr、sec、lac、opp、sdrD)的同时沉默进一步破坏了MRSA的稳定性,而应激反应基因(yidD、nfsA、kdpA)的上调表明细菌代谢瘫痪。在糖尿病小鼠模型中,水凝胶可减轻氧化应激(dhe证实的ROS减少),将巨噬细胞极化为促愈合的M2表型(Arg-1 + /TNF-α↓),并增强血管生成(VEGF/CD31↑),同时排列胶原沉积。与对照组相比,这种多功能作用使伤口愈合速度加快了48%,优于临床标准。通过将纳米材料的杀菌策略与宿主微环境重新校准相结合,COG-Z@P200水凝胶重新定义了糖尿病伤口管理,提供了一种针对多重耐药感染的无抗生素解决方案。结论:我们的工作建立了一种生物材料范式,可以同时针对病原体脆弱性和恢复组织稳态,解决慢性伤口的多维复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multifunctional hydrogel with mild photothermal properties enhances diabetic wound repair by targeting MRSA energy metabolism.

Background: Diabetic wound infections, exacerbated by multidrug-resistant pathogens like MRSA, remain a critical challenge due to biofilm persistence and dysregulated oxidative-inflammatory-metabolic crosstalk.

Results: In this work, we engineered COG-Z@P200 hydrogel, a chitosan-based hydrogel integrating polydopamine-coated ZIF-8 nanoparticles, to synergize mild photothermal therapy (40-45 °C) with metabolic-immune reprogramming. Upon NIR irradiation, COG-Z@P200 disrupted MRSA through Zn2⁺-mediated membrane destabilization and localized hyperthermia, achieving >99.5% eradication via combined physical puncture and metabolic interference. Multi-omics analyses revealed suppression of glycolysis (eno, gap downregulation), TCA cycle arrested (sucC, sdhA, icd inhibition), and disruption of arginine biosynthesis (arcA, arcC, arcD downregulation), impairing biofilm formation and pathogenicity. Concurrent silencing of quorum sensing and virulence genes (agr, sec, lac, opp, sdrD) further destabilized MRSA, while upregulation of stress-response genes (yidD, nfsA, kdpA) indicated bacterial metabolic paralysis. In diabetic murine models, the hydrogel attenuated oxidative stress (DHE-confirmed ROS reduction), polarized macrophages to pro-healing M2 phenotypes (Arg-1⁺/TNF-α↓), and enhanced angiogenesis (VEGF/CD31↑) alongside aligned collagen deposition. This multifunctional action accelerated wound closure by 48% versus controls, outperforming clinical standards. By converging nanomaterial-enabled bactericidal strategies with host microenvironment recalibration, COG-Z@P200 hydrogel redefined diabetic wound management, offering an antibiotic-free solution against multidrug-resistant infections.

Conclusion: Our work established a biomaterial paradigm that concurrently targets pathogen vulnerabilities and restores tissue homeostasis, addressing the multidimensional complexity of chronic wounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信