R Annoji Reddy, Vibha, H M Suresh Kumar, M N Ravikantha, J Thipperudrappa
{"title":"基于药物分子ph依赖性吸收和荧光跃迁的分子逻辑门设计。","authors":"R Annoji Reddy, Vibha, H M Suresh Kumar, M N Ravikantha, J Thipperudrappa","doi":"10.1007/s10895-025-04375-y","DOIUrl":null,"url":null,"abstract":"<p><p>In this manuscript, we have explored the absorption and fluorescence properties of Sulfamethoxazole (SMX) and Trimethoprim (TMP) in the pH range 1-14. The absorption and fluorescence properties of SMX and TMP exhibit significant variations with changes in pH. These variations in absorption and fluorescence characteristics have been analyzed based on the existence of different species of these molecules in different pH ranges. The variations in absorption and fluorescence intensity of SMX and TMP molecules as a function of pH have been utilized to design two-input molecular logic gates, namely Improved-INHIBIT (I-INHIBIT) and IMPLICATION. Also, the absorption and fluorescence properties at different wavelength maxima have been utilized to design the same molecular logic gates.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Molecular Logic Gates Via pH-dependent Absorption and Fluorescence Transitions in Drug Molecules.\",\"authors\":\"R Annoji Reddy, Vibha, H M Suresh Kumar, M N Ravikantha, J Thipperudrappa\",\"doi\":\"10.1007/s10895-025-04375-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this manuscript, we have explored the absorption and fluorescence properties of Sulfamethoxazole (SMX) and Trimethoprim (TMP) in the pH range 1-14. The absorption and fluorescence properties of SMX and TMP exhibit significant variations with changes in pH. These variations in absorption and fluorescence characteristics have been analyzed based on the existence of different species of these molecules in different pH ranges. The variations in absorption and fluorescence intensity of SMX and TMP molecules as a function of pH have been utilized to design two-input molecular logic gates, namely Improved-INHIBIT (I-INHIBIT) and IMPLICATION. Also, the absorption and fluorescence properties at different wavelength maxima have been utilized to design the same molecular logic gates.</p>\",\"PeriodicalId\":15800,\"journal\":{\"name\":\"Journal of Fluorescence\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluorescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10895-025-04375-y\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-025-04375-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Design of Molecular Logic Gates Via pH-dependent Absorption and Fluorescence Transitions in Drug Molecules.
In this manuscript, we have explored the absorption and fluorescence properties of Sulfamethoxazole (SMX) and Trimethoprim (TMP) in the pH range 1-14. The absorption and fluorescence properties of SMX and TMP exhibit significant variations with changes in pH. These variations in absorption and fluorescence characteristics have been analyzed based on the existence of different species of these molecules in different pH ranges. The variations in absorption and fluorescence intensity of SMX and TMP molecules as a function of pH have been utilized to design two-input molecular logic gates, namely Improved-INHIBIT (I-INHIBIT) and IMPLICATION. Also, the absorption and fluorescence properties at different wavelength maxima have been utilized to design the same molecular logic gates.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.