具有增强细胞相容性和抗菌活性的多功能聚己内酯给药系统。

IF 5.2 3区 医学 Q1 ENGINEERING, BIOMEDICAL
Celine Guder, Anja Hofmann, Therese Schüler, Torsten Sterzenbach, Hans-Peter Wiesmann, Katrin Lorenz, Christian Hannig, Christian Reeps, Benjamin Kruppke
{"title":"具有增强细胞相容性和抗菌活性的多功能聚己内酯给药系统。","authors":"Celine Guder, Anja Hofmann, Therese Schüler, Torsten Sterzenbach, Hans-Peter Wiesmann, Katrin Lorenz, Christian Hannig, Christian Reeps, Benjamin Kruppke","doi":"10.3390/jfb16050182","DOIUrl":null,"url":null,"abstract":"<p><p>Common antibiotic therapies to treat bacterial infections are associated with systemic side effects and the development of resistance, directly connected to duration and dosage. Local drug delivery systems (DDSs) offer an alternative by localising antibiotics and thereby limiting their side effects while reducing the dosage necessary. A biodegradable polyester polycaprolactone (PCL)-based DDS was thus produced, containing various clinically relevant drugs. It was shown that the incorporation of four distinct antibiotic classes (amoxicillin, doxycycline, metronidazole and rifampicin), with very high mass fractions ranging up to 20 wt%, was feasible within the PCL matrix. This DDS showed the capacity for effective and sustained release. The release kinetics over 14 days were proven, showing a significant decrease in cytotoxicity with smooth muscle cells as well as an antibacterial effect on (1) aerobic, (2) anaerobic, (3) Gram-positive and (4) Gram-negative pathogens in vitro. The DDS demonstrated a markedly diminished cytotoxic impact owing to sustained release in comparison to pure antibiotics, while simultaneously maintaining their antibacterial efficacy. In conclusion, DDSs are a more tolerable form of antibiotics administration due to the hydrophobic PCL matrix causing a slower diffusion-controlled release, proven as a release mechanism via the Peppa-Sahlin model.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 5","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12111853/pdf/","citationCount":"0","resultStr":"{\"title\":\"Versatile Polycaprolactone-Based Drug Delivery System with Enhanced Cytocompatibility and Antibacterial Activity.\",\"authors\":\"Celine Guder, Anja Hofmann, Therese Schüler, Torsten Sterzenbach, Hans-Peter Wiesmann, Katrin Lorenz, Christian Hannig, Christian Reeps, Benjamin Kruppke\",\"doi\":\"10.3390/jfb16050182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Common antibiotic therapies to treat bacterial infections are associated with systemic side effects and the development of resistance, directly connected to duration and dosage. Local drug delivery systems (DDSs) offer an alternative by localising antibiotics and thereby limiting their side effects while reducing the dosage necessary. A biodegradable polyester polycaprolactone (PCL)-based DDS was thus produced, containing various clinically relevant drugs. It was shown that the incorporation of four distinct antibiotic classes (amoxicillin, doxycycline, metronidazole and rifampicin), with very high mass fractions ranging up to 20 wt%, was feasible within the PCL matrix. This DDS showed the capacity for effective and sustained release. The release kinetics over 14 days were proven, showing a significant decrease in cytotoxicity with smooth muscle cells as well as an antibacterial effect on (1) aerobic, (2) anaerobic, (3) Gram-positive and (4) Gram-negative pathogens in vitro. The DDS demonstrated a markedly diminished cytotoxic impact owing to sustained release in comparison to pure antibiotics, while simultaneously maintaining their antibacterial efficacy. In conclusion, DDSs are a more tolerable form of antibiotics administration due to the hydrophobic PCL matrix causing a slower diffusion-controlled release, proven as a release mechanism via the Peppa-Sahlin model.</p>\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":\"16 5\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12111853/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb16050182\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16050182","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

治疗细菌感染的常用抗生素疗法与全身副作用和耐药性的发展有关,与持续时间和剂量直接相关。局部给药系统(dds)提供了另一种选择,它使抗生素局部化,从而在减少必要剂量的同时限制其副作用。由此制备了一种可生物降解的聚己内酯(PCL)基DDS,含有多种临床相关药物。结果表明,四种不同种类的抗生素(阿莫西林、强力霉素、甲硝唑和利福平)在PCL基质中以高达20%的质量分数掺入是可行的。该DDS显示了有效和持续释放的能力。经过14天的释放动力学验证,显示出对平滑肌细胞的细胞毒性显著降低,并在体外对(1)好氧,(2)厌氧,(3)革兰氏阳性和(4)革兰氏阴性病原体具有抗菌作用。与纯抗生素相比,由于持续释放,DDS显示出明显降低的细胞毒性影响,同时保持其抗菌功效。总之,dds是一种更耐受的抗生素给药形式,因为疏水性PCL基质导致较慢的扩散控制释放,通过Peppa-Sahlin模型被证明是一种释放机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Versatile Polycaprolactone-Based Drug Delivery System with Enhanced Cytocompatibility and Antibacterial Activity.

Common antibiotic therapies to treat bacterial infections are associated with systemic side effects and the development of resistance, directly connected to duration and dosage. Local drug delivery systems (DDSs) offer an alternative by localising antibiotics and thereby limiting their side effects while reducing the dosage necessary. A biodegradable polyester polycaprolactone (PCL)-based DDS was thus produced, containing various clinically relevant drugs. It was shown that the incorporation of four distinct antibiotic classes (amoxicillin, doxycycline, metronidazole and rifampicin), with very high mass fractions ranging up to 20 wt%, was feasible within the PCL matrix. This DDS showed the capacity for effective and sustained release. The release kinetics over 14 days were proven, showing a significant decrease in cytotoxicity with smooth muscle cells as well as an antibacterial effect on (1) aerobic, (2) anaerobic, (3) Gram-positive and (4) Gram-negative pathogens in vitro. The DDS demonstrated a markedly diminished cytotoxic impact owing to sustained release in comparison to pure antibiotics, while simultaneously maintaining their antibacterial efficacy. In conclusion, DDSs are a more tolerable form of antibiotics administration due to the hydrophobic PCL matrix causing a slower diffusion-controlled release, proven as a release mechanism via the Peppa-Sahlin model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Functional Biomaterials
Journal of Functional Biomaterials Engineering-Biomedical Engineering
CiteScore
4.60
自引率
4.20%
发文量
226
审稿时长
11 weeks
期刊介绍: Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信