Panjing Liu , Xiaofang Zhang , Yubo Wang , Beibei Xiao , Qianfu Su , Tao Zhang , Hongyi Wei
{"title":"白衣原甲(鞘翅目:金盏花总科)中三种触角特异性气味结合蛋白参与了花挥发物的识别。","authors":"Panjing Liu , Xiaofang Zhang , Yubo Wang , Beibei Xiao , Qianfu Su , Tao Zhang , Hongyi Wei","doi":"10.1016/j.jinsphys.2025.104823","DOIUrl":null,"url":null,"abstract":"<div><div>Odorant binding proteins (OBPs) play a vital role in the insect olfactory recognition system, as they bind and transport specific semiochemicals to chemosensory receptors for further processing. The agricultural and horticultural pest, white-spotted flower chafer (WSFC), <em>Protaetia brevitarsis</em> (Coleoptera, Scarabaeoidea), has significantly harmed numerous crops and fruits in China. It is hypothesized that WSFCs rely on specific OBPs and chemosensory receptors to identify palatable food sources and optimal oviposition sites. Twenty-three putative OBPs (PbreOBPs) were identified from the WSFC genome in our research. Based on phylogenetic analysis, PbreOBPs exhibited high degree of similarity to those of <em>Holotrichia parallela</em> and <em>Anomala corpulenta</em>. Tissue expression profiles showed that ten PbreOBPs exhibited antenna-biased expression. We recombined and purified three antenna-specific PbreOBPs: PbreOBP8, PbreOBP9, and PbreOBP18. Fluorescence competitive binding assays revealed that they had higher binding affinities to <em>β</em>-ionone, phenethyl salicylate, phenylacetaldehyde, and benzyl benzoate — compounds commonly found in floral volatiles. Additionally, PbreOBP8 showed the ability to bind microbial volatiles, such as 3-octanol, 3-methyl-1-butanol, and 1-octen-3-ol, suggesting a role in locating food or oviposition sites. Forthermore, we also predicted the key acid residues which involved in the binding of three PbreOBPs towards floral and microbial volatiles. The present investigation demonstrated that the antenna-specific PbreOBP8, PbreOBP9 and PbreOBP18 were likely involved in mediating the recognition of floral volatiles. The findings introduce possible avenues for further research into PbreOBPs and provide potential targets for creating olfactory-based control methods for WSFC populations.</div></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":"164 ","pages":"Article 104823"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three antenna-specific odorant binding proteins in Protaetia brevitarsis (Coleoptera: Scarabaeoidea) involve in recognition of floral volatiles\",\"authors\":\"Panjing Liu , Xiaofang Zhang , Yubo Wang , Beibei Xiao , Qianfu Su , Tao Zhang , Hongyi Wei\",\"doi\":\"10.1016/j.jinsphys.2025.104823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Odorant binding proteins (OBPs) play a vital role in the insect olfactory recognition system, as they bind and transport specific semiochemicals to chemosensory receptors for further processing. The agricultural and horticultural pest, white-spotted flower chafer (WSFC), <em>Protaetia brevitarsis</em> (Coleoptera, Scarabaeoidea), has significantly harmed numerous crops and fruits in China. It is hypothesized that WSFCs rely on specific OBPs and chemosensory receptors to identify palatable food sources and optimal oviposition sites. Twenty-three putative OBPs (PbreOBPs) were identified from the WSFC genome in our research. Based on phylogenetic analysis, PbreOBPs exhibited high degree of similarity to those of <em>Holotrichia parallela</em> and <em>Anomala corpulenta</em>. Tissue expression profiles showed that ten PbreOBPs exhibited antenna-biased expression. We recombined and purified three antenna-specific PbreOBPs: PbreOBP8, PbreOBP9, and PbreOBP18. Fluorescence competitive binding assays revealed that they had higher binding affinities to <em>β</em>-ionone, phenethyl salicylate, phenylacetaldehyde, and benzyl benzoate — compounds commonly found in floral volatiles. Additionally, PbreOBP8 showed the ability to bind microbial volatiles, such as 3-octanol, 3-methyl-1-butanol, and 1-octen-3-ol, suggesting a role in locating food or oviposition sites. Forthermore, we also predicted the key acid residues which involved in the binding of three PbreOBPs towards floral and microbial volatiles. The present investigation demonstrated that the antenna-specific PbreOBP8, PbreOBP9 and PbreOBP18 were likely involved in mediating the recognition of floral volatiles. The findings introduce possible avenues for further research into PbreOBPs and provide potential targets for creating olfactory-based control methods for WSFC populations.</div></div>\",\"PeriodicalId\":16189,\"journal\":{\"name\":\"Journal of insect physiology\",\"volume\":\"164 \",\"pages\":\"Article 104823\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of insect physiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022191025000770\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of insect physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022191025000770","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Three antenna-specific odorant binding proteins in Protaetia brevitarsis (Coleoptera: Scarabaeoidea) involve in recognition of floral volatiles
Odorant binding proteins (OBPs) play a vital role in the insect olfactory recognition system, as they bind and transport specific semiochemicals to chemosensory receptors for further processing. The agricultural and horticultural pest, white-spotted flower chafer (WSFC), Protaetia brevitarsis (Coleoptera, Scarabaeoidea), has significantly harmed numerous crops and fruits in China. It is hypothesized that WSFCs rely on specific OBPs and chemosensory receptors to identify palatable food sources and optimal oviposition sites. Twenty-three putative OBPs (PbreOBPs) were identified from the WSFC genome in our research. Based on phylogenetic analysis, PbreOBPs exhibited high degree of similarity to those of Holotrichia parallela and Anomala corpulenta. Tissue expression profiles showed that ten PbreOBPs exhibited antenna-biased expression. We recombined and purified three antenna-specific PbreOBPs: PbreOBP8, PbreOBP9, and PbreOBP18. Fluorescence competitive binding assays revealed that they had higher binding affinities to β-ionone, phenethyl salicylate, phenylacetaldehyde, and benzyl benzoate — compounds commonly found in floral volatiles. Additionally, PbreOBP8 showed the ability to bind microbial volatiles, such as 3-octanol, 3-methyl-1-butanol, and 1-octen-3-ol, suggesting a role in locating food or oviposition sites. Forthermore, we also predicted the key acid residues which involved in the binding of three PbreOBPs towards floral and microbial volatiles. The present investigation demonstrated that the antenna-specific PbreOBP8, PbreOBP9 and PbreOBP18 were likely involved in mediating the recognition of floral volatiles. The findings introduce possible avenues for further research into PbreOBPs and provide potential targets for creating olfactory-based control methods for WSFC populations.
期刊介绍:
All aspects of insect physiology are published in this journal which will also accept papers on the physiology of other arthropods, if the referees consider the work to be of general interest. The coverage includes endocrinology (in relation to moulting, reproduction and metabolism), pheromones, neurobiology (cellular, integrative and developmental), physiological pharmacology, nutrition (food selection, digestion and absorption), homeostasis, excretion, reproduction and behaviour. Papers covering functional genomics and molecular approaches to physiological problems will also be included. Communications on structure and applied entomology can be published if the subject matter has an explicit bearing on the physiology of arthropods. Review articles and novel method papers are also welcomed.