Zeyao Chen, Kakei Chan, Xin Li, Li Gong, Yingjie Ma, Chiwen Huang, Yan Lu, Li Wang, Chunli Piao
{"title":"高分子纳米药物在糖尿病伤口愈合中的应用及未来展望。","authors":"Zeyao Chen, Kakei Chan, Xin Li, Li Gong, Yingjie Ma, Chiwen Huang, Yan Lu, Li Wang, Chunli Piao","doi":"10.2147/IJN.S514000","DOIUrl":null,"url":null,"abstract":"<p><p>The management of diabetic wound continues to pose significant clinical obstacles, primarily attributed to bacterial infections, excessive inflammation, oxidative stress, and impaired angiogenesis. These pathological factors not only severely affect patient well-being but also create considerable burden on medical services. Current managements often show limited efficacy, necessitating the exploration of alternative therapeutic strategies. Polymeric nanomedicines (PNs), owing to their nanoscale properties, enhanced cellular uptake, stability, bioavailability, and biocompatibility, have been broadly utilized for diabetic wound treatment. PNs demonstrate remarkable capabilities in microbial inhibition, inflammation regulation, oxidative stress mitigation, and vascular network formation, particularly when combined with various agents, including organic substances (eg, exosomes), inorganic substances (eg, metals), and biomaterials (eg, chitosan, hyaluronic acid, and hydrogels). This article systematically examines recent progress in PN-based interventions for diabetic wound recovery, highlighting the pivotal role of PNs in mitigating bacterial infection, modulating inflammatory responses, and promoting cellular regeneration. Additionally, we provide a novel perspective on the multifunctionality of PNs and their potential for overcoming the limitations of conventional therapies. Overall, PNs represent an innovative and promising approach to diabetic wound management, outperforming conventional therapies in stability, targeted delivery, and multifunctionality. In the future, investigations should concentrate on refining PNs formulations and administration strategies so as to enhance biocompatibility, and conducting well-designed clinical trials to validate their therapeutic efficacy.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"20 ","pages":"6423-6446"},"PeriodicalIF":6.6000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105632/pdf/","citationCount":"0","resultStr":"{\"title\":\"Polymeric Nanomedicines in Diabetic Wound Healing: Applications and Future Perspectives.\",\"authors\":\"Zeyao Chen, Kakei Chan, Xin Li, Li Gong, Yingjie Ma, Chiwen Huang, Yan Lu, Li Wang, Chunli Piao\",\"doi\":\"10.2147/IJN.S514000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The management of diabetic wound continues to pose significant clinical obstacles, primarily attributed to bacterial infections, excessive inflammation, oxidative stress, and impaired angiogenesis. These pathological factors not only severely affect patient well-being but also create considerable burden on medical services. Current managements often show limited efficacy, necessitating the exploration of alternative therapeutic strategies. Polymeric nanomedicines (PNs), owing to their nanoscale properties, enhanced cellular uptake, stability, bioavailability, and biocompatibility, have been broadly utilized for diabetic wound treatment. PNs demonstrate remarkable capabilities in microbial inhibition, inflammation regulation, oxidative stress mitigation, and vascular network formation, particularly when combined with various agents, including organic substances (eg, exosomes), inorganic substances (eg, metals), and biomaterials (eg, chitosan, hyaluronic acid, and hydrogels). This article systematically examines recent progress in PN-based interventions for diabetic wound recovery, highlighting the pivotal role of PNs in mitigating bacterial infection, modulating inflammatory responses, and promoting cellular regeneration. Additionally, we provide a novel perspective on the multifunctionality of PNs and their potential for overcoming the limitations of conventional therapies. Overall, PNs represent an innovative and promising approach to diabetic wound management, outperforming conventional therapies in stability, targeted delivery, and multifunctionality. In the future, investigations should concentrate on refining PNs formulations and administration strategies so as to enhance biocompatibility, and conducting well-designed clinical trials to validate their therapeutic efficacy.</p>\",\"PeriodicalId\":14084,\"journal\":{\"name\":\"International Journal of Nanomedicine\",\"volume\":\"20 \",\"pages\":\"6423-6446\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105632/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nanomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/IJN.S514000\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S514000","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Polymeric Nanomedicines in Diabetic Wound Healing: Applications and Future Perspectives.
The management of diabetic wound continues to pose significant clinical obstacles, primarily attributed to bacterial infections, excessive inflammation, oxidative stress, and impaired angiogenesis. These pathological factors not only severely affect patient well-being but also create considerable burden on medical services. Current managements often show limited efficacy, necessitating the exploration of alternative therapeutic strategies. Polymeric nanomedicines (PNs), owing to their nanoscale properties, enhanced cellular uptake, stability, bioavailability, and biocompatibility, have been broadly utilized for diabetic wound treatment. PNs demonstrate remarkable capabilities in microbial inhibition, inflammation regulation, oxidative stress mitigation, and vascular network formation, particularly when combined with various agents, including organic substances (eg, exosomes), inorganic substances (eg, metals), and biomaterials (eg, chitosan, hyaluronic acid, and hydrogels). This article systematically examines recent progress in PN-based interventions for diabetic wound recovery, highlighting the pivotal role of PNs in mitigating bacterial infection, modulating inflammatory responses, and promoting cellular regeneration. Additionally, we provide a novel perspective on the multifunctionality of PNs and their potential for overcoming the limitations of conventional therapies. Overall, PNs represent an innovative and promising approach to diabetic wound management, outperforming conventional therapies in stability, targeted delivery, and multifunctionality. In the future, investigations should concentrate on refining PNs formulations and administration strategies so as to enhance biocompatibility, and conducting well-designed clinical trials to validate their therapeutic efficacy.
期刊介绍:
The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area.
With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field.
Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.