{"title":"口服天然材料水凝胶:提高口服给药效率的新策略。","authors":"Qi Yang, Xi Xiang, Han Wang, Yue Liao, Xinzhi Li","doi":"10.1080/09205063.2025.2509028","DOIUrl":null,"url":null,"abstract":"<p><p>Oral administration, owing to its high patient compliance and favorable controllability, is widely employed in clinical settings; however, the efficacy is often constrained by the gastrointestinal environment's impact on bioavailability. As the demand for biocompatibility and biodegradability in biomedical applications intensifies, natural hydrogel-based oral drug delivery systems have gained substantial attention as promising carriers. In this study, we introduce a variety of natural materials, revealing their advantages in enhancing drug bioavailability and targeting capabilities. Through both physical and chemical crosslinking mechanisms, we successfully demonstrate hydrogels exhibiting excellent mechanical properties and biocompatibility. Furthermore, we analyze the potential applications of diverse natural oral hydrogels across fields such as gastrointestinal, metabolic, oncological, and immunotherapeutic diseases. By synthesizing recent advances in this area, we aim to elucidate the critical role these systems can play in biomedicine. Our findings suggest that natural materials possess broad prospects in drug delivery, advocating for continued exploration of their clinical application to facilitate the development and optimization of novel oral therapeutic modalities. This work provides a vital theoretical foundation and practical guidance for future innovations in drug delivery technologies.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-28"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oral natural material hydrogels: a new strategy for enhancing oral drug delivery efficiency.\",\"authors\":\"Qi Yang, Xi Xiang, Han Wang, Yue Liao, Xinzhi Li\",\"doi\":\"10.1080/09205063.2025.2509028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oral administration, owing to its high patient compliance and favorable controllability, is widely employed in clinical settings; however, the efficacy is often constrained by the gastrointestinal environment's impact on bioavailability. As the demand for biocompatibility and biodegradability in biomedical applications intensifies, natural hydrogel-based oral drug delivery systems have gained substantial attention as promising carriers. In this study, we introduce a variety of natural materials, revealing their advantages in enhancing drug bioavailability and targeting capabilities. Through both physical and chemical crosslinking mechanisms, we successfully demonstrate hydrogels exhibiting excellent mechanical properties and biocompatibility. Furthermore, we analyze the potential applications of diverse natural oral hydrogels across fields such as gastrointestinal, metabolic, oncological, and immunotherapeutic diseases. By synthesizing recent advances in this area, we aim to elucidate the critical role these systems can play in biomedicine. Our findings suggest that natural materials possess broad prospects in drug delivery, advocating for continued exploration of their clinical application to facilitate the development and optimization of novel oral therapeutic modalities. This work provides a vital theoretical foundation and practical guidance for future innovations in drug delivery technologies.</p>\",\"PeriodicalId\":15195,\"journal\":{\"name\":\"Journal of Biomaterials Science, Polymer Edition\",\"volume\":\" \",\"pages\":\"1-28\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Science, Polymer Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/09205063.2025.2509028\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2509028","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Oral natural material hydrogels: a new strategy for enhancing oral drug delivery efficiency.
Oral administration, owing to its high patient compliance and favorable controllability, is widely employed in clinical settings; however, the efficacy is often constrained by the gastrointestinal environment's impact on bioavailability. As the demand for biocompatibility and biodegradability in biomedical applications intensifies, natural hydrogel-based oral drug delivery systems have gained substantial attention as promising carriers. In this study, we introduce a variety of natural materials, revealing their advantages in enhancing drug bioavailability and targeting capabilities. Through both physical and chemical crosslinking mechanisms, we successfully demonstrate hydrogels exhibiting excellent mechanical properties and biocompatibility. Furthermore, we analyze the potential applications of diverse natural oral hydrogels across fields such as gastrointestinal, metabolic, oncological, and immunotherapeutic diseases. By synthesizing recent advances in this area, we aim to elucidate the critical role these systems can play in biomedicine. Our findings suggest that natural materials possess broad prospects in drug delivery, advocating for continued exploration of their clinical application to facilitate the development and optimization of novel oral therapeutic modalities. This work provides a vital theoretical foundation and practical guidance for future innovations in drug delivery technologies.
期刊介绍:
The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels.
The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.