口服天然材料水凝胶:提高口服给药效率的新策略。

IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Qi Yang, Xi Xiang, Han Wang, Yue Liao, Xinzhi Li
{"title":"口服天然材料水凝胶:提高口服给药效率的新策略。","authors":"Qi Yang, Xi Xiang, Han Wang, Yue Liao, Xinzhi Li","doi":"10.1080/09205063.2025.2509028","DOIUrl":null,"url":null,"abstract":"<p><p>Oral administration, owing to its high patient compliance and favorable controllability, is widely employed in clinical settings; however, the efficacy is often constrained by the gastrointestinal environment's impact on bioavailability. As the demand for biocompatibility and biodegradability in biomedical applications intensifies, natural hydrogel-based oral drug delivery systems have gained substantial attention as promising carriers. In this study, we introduce a variety of natural materials, revealing their advantages in enhancing drug bioavailability and targeting capabilities. Through both physical and chemical crosslinking mechanisms, we successfully demonstrate hydrogels exhibiting excellent mechanical properties and biocompatibility. Furthermore, we analyze the potential applications of diverse natural oral hydrogels across fields such as gastrointestinal, metabolic, oncological, and immunotherapeutic diseases. By synthesizing recent advances in this area, we aim to elucidate the critical role these systems can play in biomedicine. Our findings suggest that natural materials possess broad prospects in drug delivery, advocating for continued exploration of their clinical application to facilitate the development and optimization of novel oral therapeutic modalities. This work provides a vital theoretical foundation and practical guidance for future innovations in drug delivery technologies.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-28"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oral natural material hydrogels: a new strategy for enhancing oral drug delivery efficiency.\",\"authors\":\"Qi Yang, Xi Xiang, Han Wang, Yue Liao, Xinzhi Li\",\"doi\":\"10.1080/09205063.2025.2509028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oral administration, owing to its high patient compliance and favorable controllability, is widely employed in clinical settings; however, the efficacy is often constrained by the gastrointestinal environment's impact on bioavailability. As the demand for biocompatibility and biodegradability in biomedical applications intensifies, natural hydrogel-based oral drug delivery systems have gained substantial attention as promising carriers. In this study, we introduce a variety of natural materials, revealing their advantages in enhancing drug bioavailability and targeting capabilities. Through both physical and chemical crosslinking mechanisms, we successfully demonstrate hydrogels exhibiting excellent mechanical properties and biocompatibility. Furthermore, we analyze the potential applications of diverse natural oral hydrogels across fields such as gastrointestinal, metabolic, oncological, and immunotherapeutic diseases. By synthesizing recent advances in this area, we aim to elucidate the critical role these systems can play in biomedicine. Our findings suggest that natural materials possess broad prospects in drug delivery, advocating for continued exploration of their clinical application to facilitate the development and optimization of novel oral therapeutic modalities. This work provides a vital theoretical foundation and practical guidance for future innovations in drug delivery technologies.</p>\",\"PeriodicalId\":15195,\"journal\":{\"name\":\"Journal of Biomaterials Science, Polymer Edition\",\"volume\":\" \",\"pages\":\"1-28\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Science, Polymer Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/09205063.2025.2509028\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2509028","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

口服给药因其患者依从性高、可控性好,被广泛应用于临床;然而,其功效往往受到胃肠道环境对生物利用度的影响的限制。随着生物医学应用中对生物相容性和生物可降解性要求的提高,天然水凝胶口服给药系统作为一种有前景的载体受到了广泛关注。在本研究中,我们介绍了多种天然材料,揭示了它们在提高药物生物利用度和靶向能力方面的优势。通过物理和化学交联机制,我们成功地证明了水凝胶具有优异的力学性能和生物相容性。此外,我们分析了各种天然口服水凝胶在胃肠道、代谢、肿瘤和免疫治疗疾病等领域的潜在应用。通过综合该领域的最新进展,我们旨在阐明这些系统在生物医学中的关键作用。我们的研究结果表明,天然材料在给药方面具有广阔的前景,提倡继续探索其临床应用,以促进新型口服治疗方式的开发和优化。这项工作为未来给药技术的创新提供了重要的理论基础和实践指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oral natural material hydrogels: a new strategy for enhancing oral drug delivery efficiency.

Oral administration, owing to its high patient compliance and favorable controllability, is widely employed in clinical settings; however, the efficacy is often constrained by the gastrointestinal environment's impact on bioavailability. As the demand for biocompatibility and biodegradability in biomedical applications intensifies, natural hydrogel-based oral drug delivery systems have gained substantial attention as promising carriers. In this study, we introduce a variety of natural materials, revealing their advantages in enhancing drug bioavailability and targeting capabilities. Through both physical and chemical crosslinking mechanisms, we successfully demonstrate hydrogels exhibiting excellent mechanical properties and biocompatibility. Furthermore, we analyze the potential applications of diverse natural oral hydrogels across fields such as gastrointestinal, metabolic, oncological, and immunotherapeutic diseases. By synthesizing recent advances in this area, we aim to elucidate the critical role these systems can play in biomedicine. Our findings suggest that natural materials possess broad prospects in drug delivery, advocating for continued exploration of their clinical application to facilitate the development and optimization of novel oral therapeutic modalities. This work provides a vital theoretical foundation and practical guidance for future innovations in drug delivery technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomaterials Science, Polymer Edition
Journal of Biomaterials Science, Polymer Edition 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
5.60%
发文量
117
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels. The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信