ChiHang Zhang, JianShu Guo, Lei Lei, Lu Yu, DongXia Fan, Biao Wu, Ge Wang, WenQing Zhang, Lin Lin, XinLei Xu, XiHao Du, JinZhuo Zhao
{"title":"STAT通路在pm2.5致变应性鼻炎中的功能作用及治疗靶点的鉴定","authors":"ChiHang Zhang, JianShu Guo, Lei Lei, Lu Yu, DongXia Fan, Biao Wu, Ge Wang, WenQing Zhang, Lin Lin, XinLei Xu, XiHao Du, JinZhuo Zhao","doi":"10.1080/08958378.2025.2502791","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Increasing evidence suggests that exposure to fine particulate matter (PM<sub>2.5</sub>) is associated with an elevated risk of respiratory diseases. However, the precise mechanisms by which PM<sub>2.5</sub> influences inflammatory processes in allergic rhinitis (AR) remain insufficiently understood. The STAT pathway has been identified as a critical mediator of immune and inflammatory responses, but its specific role in modulating PM<sub>2.5</sub>-induced effects in the nasal mucosa of AR remains unclear. This study aims to investigate the impact of PM<sub>2.5</sub> on the STAT pathway in the inflammatory response of the nasal mucosa during AR.</p><p><strong>Methods: </strong>We analyzed mRNA expression profiles (GSE215411) from the Gene Expression Omnibus (GEO) database to investigate the effects of PM<sub>2.5</sub> on human nasal mucosa-derived fibroblasts. Differential expression analysis identified differential expression genes (DEGs), which were visualized through hierarchical clustering and radar plots. GO/KEGG enrichment and Gene Set Enrichment Analysis (GSEA) identified key pathways, focusing on STAT pathway enrichment. Protein-protein interactions (PPIs) within the STAT pathway were analyzed using STRING and Cytoscapedatabase, revealing immune response and cytokine signaling as predominant functional pathways. An AR model, induced by ovalbumin sensitization and whole-body ambient PM<sub>2.5</sub> exposure, was utilized to assess the activation of the STAT pathway in nasal mucosal tissue.</p><p><strong>Results: </strong>A total of 426 DEGs were identified in human nasal mucosa-derived fibroblasts following PM<sub>2.5</sub> exposure, emphasizing STAT pathway involvement. Validation in an AR mouse model confirmed that allergens and PM<sub>2.5</sub> activate the STAT pathway, modulating Th2 and inflammatory cytokines.</p><p><strong>Conclusion: </strong>PM<sub>2.5</sub> exposure significantly activates the STAT pathway in the nasal mucosa of AR, amplifying Th2-related inflammatory cytokine response.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":" ","pages":"1-16"},"PeriodicalIF":2.0000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of functional roles and therapeutic targets of the STAT pathway in PM<sub>2.5</sub>-induced allergic rhinitis.\",\"authors\":\"ChiHang Zhang, JianShu Guo, Lei Lei, Lu Yu, DongXia Fan, Biao Wu, Ge Wang, WenQing Zhang, Lin Lin, XinLei Xu, XiHao Du, JinZhuo Zhao\",\"doi\":\"10.1080/08958378.2025.2502791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Increasing evidence suggests that exposure to fine particulate matter (PM<sub>2.5</sub>) is associated with an elevated risk of respiratory diseases. However, the precise mechanisms by which PM<sub>2.5</sub> influences inflammatory processes in allergic rhinitis (AR) remain insufficiently understood. The STAT pathway has been identified as a critical mediator of immune and inflammatory responses, but its specific role in modulating PM<sub>2.5</sub>-induced effects in the nasal mucosa of AR remains unclear. This study aims to investigate the impact of PM<sub>2.5</sub> on the STAT pathway in the inflammatory response of the nasal mucosa during AR.</p><p><strong>Methods: </strong>We analyzed mRNA expression profiles (GSE215411) from the Gene Expression Omnibus (GEO) database to investigate the effects of PM<sub>2.5</sub> on human nasal mucosa-derived fibroblasts. Differential expression analysis identified differential expression genes (DEGs), which were visualized through hierarchical clustering and radar plots. GO/KEGG enrichment and Gene Set Enrichment Analysis (GSEA) identified key pathways, focusing on STAT pathway enrichment. Protein-protein interactions (PPIs) within the STAT pathway were analyzed using STRING and Cytoscapedatabase, revealing immune response and cytokine signaling as predominant functional pathways. An AR model, induced by ovalbumin sensitization and whole-body ambient PM<sub>2.5</sub> exposure, was utilized to assess the activation of the STAT pathway in nasal mucosal tissue.</p><p><strong>Results: </strong>A total of 426 DEGs were identified in human nasal mucosa-derived fibroblasts following PM<sub>2.5</sub> exposure, emphasizing STAT pathway involvement. Validation in an AR mouse model confirmed that allergens and PM<sub>2.5</sub> activate the STAT pathway, modulating Th2 and inflammatory cytokines.</p><p><strong>Conclusion: </strong>PM<sub>2.5</sub> exposure significantly activates the STAT pathway in the nasal mucosa of AR, amplifying Th2-related inflammatory cytokine response.</p>\",\"PeriodicalId\":13561,\"journal\":{\"name\":\"Inhalation Toxicology\",\"volume\":\" \",\"pages\":\"1-16\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inhalation Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08958378.2025.2502791\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inhalation Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08958378.2025.2502791","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Identification of functional roles and therapeutic targets of the STAT pathway in PM2.5-induced allergic rhinitis.
Background: Increasing evidence suggests that exposure to fine particulate matter (PM2.5) is associated with an elevated risk of respiratory diseases. However, the precise mechanisms by which PM2.5 influences inflammatory processes in allergic rhinitis (AR) remain insufficiently understood. The STAT pathway has been identified as a critical mediator of immune and inflammatory responses, but its specific role in modulating PM2.5-induced effects in the nasal mucosa of AR remains unclear. This study aims to investigate the impact of PM2.5 on the STAT pathway in the inflammatory response of the nasal mucosa during AR.
Methods: We analyzed mRNA expression profiles (GSE215411) from the Gene Expression Omnibus (GEO) database to investigate the effects of PM2.5 on human nasal mucosa-derived fibroblasts. Differential expression analysis identified differential expression genes (DEGs), which were visualized through hierarchical clustering and radar plots. GO/KEGG enrichment and Gene Set Enrichment Analysis (GSEA) identified key pathways, focusing on STAT pathway enrichment. Protein-protein interactions (PPIs) within the STAT pathway were analyzed using STRING and Cytoscapedatabase, revealing immune response and cytokine signaling as predominant functional pathways. An AR model, induced by ovalbumin sensitization and whole-body ambient PM2.5 exposure, was utilized to assess the activation of the STAT pathway in nasal mucosal tissue.
Results: A total of 426 DEGs were identified in human nasal mucosa-derived fibroblasts following PM2.5 exposure, emphasizing STAT pathway involvement. Validation in an AR mouse model confirmed that allergens and PM2.5 activate the STAT pathway, modulating Th2 and inflammatory cytokines.
Conclusion: PM2.5 exposure significantly activates the STAT pathway in the nasal mucosa of AR, amplifying Th2-related inflammatory cytokine response.
期刊介绍:
Inhalation Toxicology is a peer-reviewed publication providing a key forum for the latest accomplishments and advancements in concepts, approaches, and procedures presently being used to evaluate the health risk associated with airborne chemicals.
The journal publishes original research, reviews, symposia, and workshop topics involving the respiratory system’s functions in health and disease, the pathogenesis and mechanism of injury, the extrapolation of animal data to humans, the effects of inhaled substances on extra-pulmonary systems, as well as reliable and innovative models for predicting human disease.