Benfeng Tang, Zhihong Liu, Huabao Xiong, Junfeng Zhang, Jun Dai
{"title":"IFN-λ:释放其在疾病治疗中的潜力,从急性炎症调节到癌症免疫治疗。","authors":"Benfeng Tang, Zhihong Liu, Huabao Xiong, Junfeng Zhang, Jun Dai","doi":"10.1111/imm.13954","DOIUrl":null,"url":null,"abstract":"<p><p>Type III interferons (IFN-λ), which include IFN-λ1 (or interleukin [IL]-29), IFN-λ2 (IL-28A), IFN-λ3 (IL-28B) and IFN-λ4, exert their effects through a unique receptor complex composed of interferon lambda receptor 1 (IFNLR1) and IL-10 receptor subunit beta (IL-10R2). Studies have highlighted their critical role in modulating immune response, particularly in the context of autoimmune diseases, viral infections and cancer. Unlike type I IFNs, which are broadly expressed, IFN-λ displays a more tissue-specific expression pattern, predominantly acting on epithelial cells and certain immune cell types, such as neutrophils and B cells. This specificity allows IFN-λ to play a pivotal role in mucosal immunity, particularly at barrier sites, such as the respiratory and gastrointestinal tracts. Emerging evidence suggests that IFN-λ has a dual role in both enhancing antiviral immunity and regulating inflammation, thus offering a promising therapeutic strategy for diseases like systemic lupus erythematosus, rheumatoid arthritis, asthma and various cancers. However, the precise mechanisms by which IFN-λ influence immune modulation and disease progression remain an area of active investigation. This review aims to provide an overview of the structure, function and signalling pathways of IFN-λ, exploring their role in immune-related diseases and discussing potential avenues for therapeutic intervention.</p>","PeriodicalId":13508,"journal":{"name":"Immunology","volume":" ","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IFN-λ: Unleashing Its Potential in Disease Therapies From Acute Inflammation Regulation to Cancer Immunotherapy.\",\"authors\":\"Benfeng Tang, Zhihong Liu, Huabao Xiong, Junfeng Zhang, Jun Dai\",\"doi\":\"10.1111/imm.13954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Type III interferons (IFN-λ), which include IFN-λ1 (or interleukin [IL]-29), IFN-λ2 (IL-28A), IFN-λ3 (IL-28B) and IFN-λ4, exert their effects through a unique receptor complex composed of interferon lambda receptor 1 (IFNLR1) and IL-10 receptor subunit beta (IL-10R2). Studies have highlighted their critical role in modulating immune response, particularly in the context of autoimmune diseases, viral infections and cancer. Unlike type I IFNs, which are broadly expressed, IFN-λ displays a more tissue-specific expression pattern, predominantly acting on epithelial cells and certain immune cell types, such as neutrophils and B cells. This specificity allows IFN-λ to play a pivotal role in mucosal immunity, particularly at barrier sites, such as the respiratory and gastrointestinal tracts. Emerging evidence suggests that IFN-λ has a dual role in both enhancing antiviral immunity and regulating inflammation, thus offering a promising therapeutic strategy for diseases like systemic lupus erythematosus, rheumatoid arthritis, asthma and various cancers. However, the precise mechanisms by which IFN-λ influence immune modulation and disease progression remain an area of active investigation. This review aims to provide an overview of the structure, function and signalling pathways of IFN-λ, exploring their role in immune-related diseases and discussing potential avenues for therapeutic intervention.</p>\",\"PeriodicalId\":13508,\"journal\":{\"name\":\"Immunology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/imm.13954\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/imm.13954","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
IFN-λ: Unleashing Its Potential in Disease Therapies From Acute Inflammation Regulation to Cancer Immunotherapy.
Type III interferons (IFN-λ), which include IFN-λ1 (or interleukin [IL]-29), IFN-λ2 (IL-28A), IFN-λ3 (IL-28B) and IFN-λ4, exert their effects through a unique receptor complex composed of interferon lambda receptor 1 (IFNLR1) and IL-10 receptor subunit beta (IL-10R2). Studies have highlighted their critical role in modulating immune response, particularly in the context of autoimmune diseases, viral infections and cancer. Unlike type I IFNs, which are broadly expressed, IFN-λ displays a more tissue-specific expression pattern, predominantly acting on epithelial cells and certain immune cell types, such as neutrophils and B cells. This specificity allows IFN-λ to play a pivotal role in mucosal immunity, particularly at barrier sites, such as the respiratory and gastrointestinal tracts. Emerging evidence suggests that IFN-λ has a dual role in both enhancing antiviral immunity and regulating inflammation, thus offering a promising therapeutic strategy for diseases like systemic lupus erythematosus, rheumatoid arthritis, asthma and various cancers. However, the precise mechanisms by which IFN-λ influence immune modulation and disease progression remain an area of active investigation. This review aims to provide an overview of the structure, function and signalling pathways of IFN-λ, exploring their role in immune-related diseases and discussing potential avenues for therapeutic intervention.
期刊介绍:
Immunology is one of the longest-established immunology journals and is recognised as one of the leading journals in its field. We have global representation in authors, editors and reviewers.
Immunology publishes papers describing original findings in all areas of cellular and molecular immunology. High-quality original articles describing mechanistic insights into fundamental aspects of the immune system are welcome. Topics of interest to the journal include: immune cell development, cancer immunology, systems immunology/omics and informatics, inflammation, immunometabolism, immunology of infection, microbiota and immunity, mucosal immunology, and neuroimmunology.
The journal also publishes commissioned review articles on subjects of topical interest to immunologists, and commissions in-depth review series: themed sets of review articles which take a 360° view of select topics at the heart of immunological research.