IFN-λ:释放其在疾病治疗中的潜力,从急性炎症调节到癌症免疫治疗。

IF 4.9 3区 医学 Q2 IMMUNOLOGY
Immunology Pub Date : 2025-05-27 DOI:10.1111/imm.13954
Benfeng Tang, Zhihong Liu, Huabao Xiong, Junfeng Zhang, Jun Dai
{"title":"IFN-λ:释放其在疾病治疗中的潜力,从急性炎症调节到癌症免疫治疗。","authors":"Benfeng Tang, Zhihong Liu, Huabao Xiong, Junfeng Zhang, Jun Dai","doi":"10.1111/imm.13954","DOIUrl":null,"url":null,"abstract":"<p><p>Type III interferons (IFN-λ), which include IFN-λ1 (or interleukin [IL]-29), IFN-λ2 (IL-28A), IFN-λ3 (IL-28B) and IFN-λ4, exert their effects through a unique receptor complex composed of interferon lambda receptor 1 (IFNLR1) and IL-10 receptor subunit beta (IL-10R2). Studies have highlighted their critical role in modulating immune response, particularly in the context of autoimmune diseases, viral infections and cancer. Unlike type I IFNs, which are broadly expressed, IFN-λ displays a more tissue-specific expression pattern, predominantly acting on epithelial cells and certain immune cell types, such as neutrophils and B cells. This specificity allows IFN-λ to play a pivotal role in mucosal immunity, particularly at barrier sites, such as the respiratory and gastrointestinal tracts. Emerging evidence suggests that IFN-λ has a dual role in both enhancing antiviral immunity and regulating inflammation, thus offering a promising therapeutic strategy for diseases like systemic lupus erythematosus, rheumatoid arthritis, asthma and various cancers. However, the precise mechanisms by which IFN-λ influence immune modulation and disease progression remain an area of active investigation. This review aims to provide an overview of the structure, function and signalling pathways of IFN-λ, exploring their role in immune-related diseases and discussing potential avenues for therapeutic intervention.</p>","PeriodicalId":13508,"journal":{"name":"Immunology","volume":" ","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IFN-λ: Unleashing Its Potential in Disease Therapies From Acute Inflammation Regulation to Cancer Immunotherapy.\",\"authors\":\"Benfeng Tang, Zhihong Liu, Huabao Xiong, Junfeng Zhang, Jun Dai\",\"doi\":\"10.1111/imm.13954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Type III interferons (IFN-λ), which include IFN-λ1 (or interleukin [IL]-29), IFN-λ2 (IL-28A), IFN-λ3 (IL-28B) and IFN-λ4, exert their effects through a unique receptor complex composed of interferon lambda receptor 1 (IFNLR1) and IL-10 receptor subunit beta (IL-10R2). Studies have highlighted their critical role in modulating immune response, particularly in the context of autoimmune diseases, viral infections and cancer. Unlike type I IFNs, which are broadly expressed, IFN-λ displays a more tissue-specific expression pattern, predominantly acting on epithelial cells and certain immune cell types, such as neutrophils and B cells. This specificity allows IFN-λ to play a pivotal role in mucosal immunity, particularly at barrier sites, such as the respiratory and gastrointestinal tracts. Emerging evidence suggests that IFN-λ has a dual role in both enhancing antiviral immunity and regulating inflammation, thus offering a promising therapeutic strategy for diseases like systemic lupus erythematosus, rheumatoid arthritis, asthma and various cancers. However, the precise mechanisms by which IFN-λ influence immune modulation and disease progression remain an area of active investigation. This review aims to provide an overview of the structure, function and signalling pathways of IFN-λ, exploring their role in immune-related diseases and discussing potential avenues for therapeutic intervention.</p>\",\"PeriodicalId\":13508,\"journal\":{\"name\":\"Immunology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/imm.13954\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/imm.13954","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

III型干扰素(IFN-λ),包括IFN-λ1(或白细胞介素[IL]-29)、IFN-λ2 (IL- 28a)、IFN-λ3 (IL- 28b)和IFN-λ4,通过干扰素λ受体1 (IFNLR1)和IL-10受体亚基β (IL- 10r2)组成的独特受体复合物发挥作用。研究强调了它们在调节免疫反应方面的关键作用,特别是在自身免疫性疾病、病毒感染和癌症的情况下。与广泛表达的I型IFN不同,IFN-λ表现出更具组织特异性的表达模式,主要作用于上皮细胞和某些免疫细胞类型,如中性粒细胞和B细胞。这种特异性允许IFN-λ在粘膜免疫中发挥关键作用,特别是在屏障部位,如呼吸道和胃肠道。新的证据表明,IFN-λ具有增强抗病毒免疫和调节炎症的双重作用,因此为系统性红斑狼疮、类风湿关节炎、哮喘和各种癌症等疾病提供了有希望的治疗策略。然而,IFN-λ影响免疫调节和疾病进展的确切机制仍然是一个积极研究的领域。本文旨在综述IFN-λ的结构、功能和信号通路,探讨其在免疫相关疾病中的作用,并讨论治疗干预的潜在途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IFN-λ: Unleashing Its Potential in Disease Therapies From Acute Inflammation Regulation to Cancer Immunotherapy.

Type III interferons (IFN-λ), which include IFN-λ1 (or interleukin [IL]-29), IFN-λ2 (IL-28A), IFN-λ3 (IL-28B) and IFN-λ4, exert their effects through a unique receptor complex composed of interferon lambda receptor 1 (IFNLR1) and IL-10 receptor subunit beta (IL-10R2). Studies have highlighted their critical role in modulating immune response, particularly in the context of autoimmune diseases, viral infections and cancer. Unlike type I IFNs, which are broadly expressed, IFN-λ displays a more tissue-specific expression pattern, predominantly acting on epithelial cells and certain immune cell types, such as neutrophils and B cells. This specificity allows IFN-λ to play a pivotal role in mucosal immunity, particularly at barrier sites, such as the respiratory and gastrointestinal tracts. Emerging evidence suggests that IFN-λ has a dual role in both enhancing antiviral immunity and regulating inflammation, thus offering a promising therapeutic strategy for diseases like systemic lupus erythematosus, rheumatoid arthritis, asthma and various cancers. However, the precise mechanisms by which IFN-λ influence immune modulation and disease progression remain an area of active investigation. This review aims to provide an overview of the structure, function and signalling pathways of IFN-λ, exploring their role in immune-related diseases and discussing potential avenues for therapeutic intervention.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Immunology
Immunology 医学-免疫学
CiteScore
11.90
自引率
1.60%
发文量
175
审稿时长
4-8 weeks
期刊介绍: Immunology is one of the longest-established immunology journals and is recognised as one of the leading journals in its field. We have global representation in authors, editors and reviewers. Immunology publishes papers describing original findings in all areas of cellular and molecular immunology. High-quality original articles describing mechanistic insights into fundamental aspects of the immune system are welcome. Topics of interest to the journal include: immune cell development, cancer immunology, systems immunology/omics and informatics, inflammation, immunometabolism, immunology of infection, microbiota and immunity, mucosal immunology, and neuroimmunology. The journal also publishes commissioned review articles on subjects of topical interest to immunologists, and commissions in-depth review series: themed sets of review articles which take a 360° view of select topics at the heart of immunological research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信