Soumi Ghosh, Rajeev Chorghade, Roger C Diehl, Greg J Dodge, Sunhee Bae, Amanda E Dugan, Melanie Halim, Michael G Wuo, Helen Bartlett, Liam Herndon, Laura L Kiessling, Barbara Imperiali
{"title":"利用受人凝集素启发的聚糖分析探针研究宿主-微生物串扰的工具。","authors":"Soumi Ghosh, Rajeev Chorghade, Roger C Diehl, Greg J Dodge, Sunhee Bae, Amanda E Dugan, Melanie Halim, Michael G Wuo, Helen Bartlett, Liam Herndon, Laura L Kiessling, Barbara Imperiali","doi":"10.1093/glycob/cwaf031","DOIUrl":null,"url":null,"abstract":"<p><p>Human lectins are critical carbohydrate-binding proteins that recognize diverse glycoconjugates from microorganisms and can play a key role in host-microbe interactions. Despite their importance in immune recognition and microbe binding, the specific glycan ligands and functions of many human lectins remain poorly understood. Using previous proof-of-concept studies on selected lectins as the foundation for this work, we present ten additional glycan analysis probes (GAPs) from a diverse set of human soluble lectins, offering robust tools to investigate glycan-mediated interactions. We describe a protein engineering platform that enables scalable production of GAPs that maintain native-like conformations and oligomerization states, equipped with functional reporter tags for targeted glycan profiling. We demonstrate that the soluble GAP reagents can be used in various applications, including glycan array analysis, mucin-binding assays, tissue staining, and microbe binding in complex populations. These capabilities make GAPs valuable for dissecting interactions relevant to understanding host responses to microbes. The tools can also be used to probe differential microbial and mammalian glycan interactions, which are crucial for understanding the interactions of lectins in a physiological environment where both glycan types exist. GAPs have potential as diagnostic and prognostic tools for detecting glycan alterations in chronic diseases, microbial dysbiosis, and immune-related conditions.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tools for investigating host-microbe crosstalk using glycan analysis probes inspired by human lectins.\",\"authors\":\"Soumi Ghosh, Rajeev Chorghade, Roger C Diehl, Greg J Dodge, Sunhee Bae, Amanda E Dugan, Melanie Halim, Michael G Wuo, Helen Bartlett, Liam Herndon, Laura L Kiessling, Barbara Imperiali\",\"doi\":\"10.1093/glycob/cwaf031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human lectins are critical carbohydrate-binding proteins that recognize diverse glycoconjugates from microorganisms and can play a key role in host-microbe interactions. Despite their importance in immune recognition and microbe binding, the specific glycan ligands and functions of many human lectins remain poorly understood. Using previous proof-of-concept studies on selected lectins as the foundation for this work, we present ten additional glycan analysis probes (GAPs) from a diverse set of human soluble lectins, offering robust tools to investigate glycan-mediated interactions. We describe a protein engineering platform that enables scalable production of GAPs that maintain native-like conformations and oligomerization states, equipped with functional reporter tags for targeted glycan profiling. We demonstrate that the soluble GAP reagents can be used in various applications, including glycan array analysis, mucin-binding assays, tissue staining, and microbe binding in complex populations. These capabilities make GAPs valuable for dissecting interactions relevant to understanding host responses to microbes. The tools can also be used to probe differential microbial and mammalian glycan interactions, which are crucial for understanding the interactions of lectins in a physiological environment where both glycan types exist. GAPs have potential as diagnostic and prognostic tools for detecting glycan alterations in chronic diseases, microbial dysbiosis, and immune-related conditions.</p>\",\"PeriodicalId\":12766,\"journal\":{\"name\":\"Glycobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glycobiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/glycob/cwaf031\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glycobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/glycob/cwaf031","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Tools for investigating host-microbe crosstalk using glycan analysis probes inspired by human lectins.
Human lectins are critical carbohydrate-binding proteins that recognize diverse glycoconjugates from microorganisms and can play a key role in host-microbe interactions. Despite their importance in immune recognition and microbe binding, the specific glycan ligands and functions of many human lectins remain poorly understood. Using previous proof-of-concept studies on selected lectins as the foundation for this work, we present ten additional glycan analysis probes (GAPs) from a diverse set of human soluble lectins, offering robust tools to investigate glycan-mediated interactions. We describe a protein engineering platform that enables scalable production of GAPs that maintain native-like conformations and oligomerization states, equipped with functional reporter tags for targeted glycan profiling. We demonstrate that the soluble GAP reagents can be used in various applications, including glycan array analysis, mucin-binding assays, tissue staining, and microbe binding in complex populations. These capabilities make GAPs valuable for dissecting interactions relevant to understanding host responses to microbes. The tools can also be used to probe differential microbial and mammalian glycan interactions, which are crucial for understanding the interactions of lectins in a physiological environment where both glycan types exist. GAPs have potential as diagnostic and prognostic tools for detecting glycan alterations in chronic diseases, microbial dysbiosis, and immune-related conditions.
期刊介绍:
Established as the leading journal in the field, Glycobiology provides a unique forum dedicated to research into the biological functions of glycans, including glycoproteins, glycolipids, proteoglycans and free oligosaccharides, and on proteins that specifically interact with glycans (including lectins, glycosyltransferases, and glycosidases).
Glycobiology is essential reading for researchers in biomedicine, basic science, and the biotechnology industries. By providing a single forum, the journal aims to improve communication between glycobiologists working in different disciplines and to increase the overall visibility of the field.