利用受人凝集素启发的聚糖分析探针研究宿主-微生物串扰的工具。

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Soumi Ghosh, Rajeev Chorghade, Roger C Diehl, Greg J Dodge, Sunhee Bae, Amanda E Dugan, Melanie Halim, Michael G Wuo, Helen Bartlett, Liam Herndon, Laura L Kiessling, Barbara Imperiali
{"title":"利用受人凝集素启发的聚糖分析探针研究宿主-微生物串扰的工具。","authors":"Soumi Ghosh, Rajeev Chorghade, Roger C Diehl, Greg J Dodge, Sunhee Bae, Amanda E Dugan, Melanie Halim, Michael G Wuo, Helen Bartlett, Liam Herndon, Laura L Kiessling, Barbara Imperiali","doi":"10.1093/glycob/cwaf031","DOIUrl":null,"url":null,"abstract":"<p><p>Human lectins are critical carbohydrate-binding proteins that recognize diverse glycoconjugates from microorganisms and can play a key role in host-microbe interactions. Despite their importance in immune recognition and microbe binding, the specific glycan ligands and functions of many human lectins remain poorly understood. Using previous proof-of-concept studies on selected lectins as the foundation for this work, we present ten additional glycan analysis probes (GAPs) from a diverse set of human soluble lectins, offering robust tools to investigate glycan-mediated interactions. We describe a protein engineering platform that enables scalable production of GAPs that maintain native-like conformations and oligomerization states, equipped with functional reporter tags for targeted glycan profiling. We demonstrate that the soluble GAP reagents can be used in various applications, including glycan array analysis, mucin-binding assays, tissue staining, and microbe binding in complex populations. These capabilities make GAPs valuable for dissecting interactions relevant to understanding host responses to microbes. The tools can also be used to probe differential microbial and mammalian glycan interactions, which are crucial for understanding the interactions of lectins in a physiological environment where both glycan types exist. GAPs have potential as diagnostic and prognostic tools for detecting glycan alterations in chronic diseases, microbial dysbiosis, and immune-related conditions.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tools for investigating host-microbe crosstalk using glycan analysis probes inspired by human lectins.\",\"authors\":\"Soumi Ghosh, Rajeev Chorghade, Roger C Diehl, Greg J Dodge, Sunhee Bae, Amanda E Dugan, Melanie Halim, Michael G Wuo, Helen Bartlett, Liam Herndon, Laura L Kiessling, Barbara Imperiali\",\"doi\":\"10.1093/glycob/cwaf031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human lectins are critical carbohydrate-binding proteins that recognize diverse glycoconjugates from microorganisms and can play a key role in host-microbe interactions. Despite their importance in immune recognition and microbe binding, the specific glycan ligands and functions of many human lectins remain poorly understood. Using previous proof-of-concept studies on selected lectins as the foundation for this work, we present ten additional glycan analysis probes (GAPs) from a diverse set of human soluble lectins, offering robust tools to investigate glycan-mediated interactions. We describe a protein engineering platform that enables scalable production of GAPs that maintain native-like conformations and oligomerization states, equipped with functional reporter tags for targeted glycan profiling. We demonstrate that the soluble GAP reagents can be used in various applications, including glycan array analysis, mucin-binding assays, tissue staining, and microbe binding in complex populations. These capabilities make GAPs valuable for dissecting interactions relevant to understanding host responses to microbes. The tools can also be used to probe differential microbial and mammalian glycan interactions, which are crucial for understanding the interactions of lectins in a physiological environment where both glycan types exist. GAPs have potential as diagnostic and prognostic tools for detecting glycan alterations in chronic diseases, microbial dysbiosis, and immune-related conditions.</p>\",\"PeriodicalId\":12766,\"journal\":{\"name\":\"Glycobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glycobiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/glycob/cwaf031\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glycobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/glycob/cwaf031","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人类凝集素是一种关键的碳水化合物结合蛋白,可识别来自微生物的多种糖缀合物,并在宿主-微生物相互作用中发挥关键作用。尽管它们在免疫识别和微生物结合中很重要,但许多人类凝集素的特定聚糖配体和功能仍然知之甚少。利用先前对选定凝集素的概念验证研究作为本工作的基础,我们从不同的人可溶性凝集素中提出了10个额外的聚糖分析探针(GAPs),为研究聚糖介导的相互作用提供了强大的工具。我们描述了一个蛋白质工程平台,该平台能够大规模生产保持天然构象和寡聚化状态的gap,并配备了用于靶向聚糖分析的功能报告标签。我们证明了可溶性GAP试剂可用于各种应用,包括聚糖阵列分析,粘蛋白结合分析,组织染色和复杂群体中的微生物结合。这些能力使GAPs在剖析与理解宿主对微生物反应相关的相互作用方面具有价值。这些工具还可以用于探测不同微生物和哺乳动物的聚糖相互作用,这对于理解凝集素在两种聚糖类型存在的生理环境中的相互作用至关重要。gap有潜力作为诊断和预后工具,用于检测慢性疾病、微生物生态失调和免疫相关疾病中的多糖改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tools for investigating host-microbe crosstalk using glycan analysis probes inspired by human lectins.

Human lectins are critical carbohydrate-binding proteins that recognize diverse glycoconjugates from microorganisms and can play a key role in host-microbe interactions. Despite their importance in immune recognition and microbe binding, the specific glycan ligands and functions of many human lectins remain poorly understood. Using previous proof-of-concept studies on selected lectins as the foundation for this work, we present ten additional glycan analysis probes (GAPs) from a diverse set of human soluble lectins, offering robust tools to investigate glycan-mediated interactions. We describe a protein engineering platform that enables scalable production of GAPs that maintain native-like conformations and oligomerization states, equipped with functional reporter tags for targeted glycan profiling. We demonstrate that the soluble GAP reagents can be used in various applications, including glycan array analysis, mucin-binding assays, tissue staining, and microbe binding in complex populations. These capabilities make GAPs valuable for dissecting interactions relevant to understanding host responses to microbes. The tools can also be used to probe differential microbial and mammalian glycan interactions, which are crucial for understanding the interactions of lectins in a physiological environment where both glycan types exist. GAPs have potential as diagnostic and prognostic tools for detecting glycan alterations in chronic diseases, microbial dysbiosis, and immune-related conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Glycobiology
Glycobiology 生物-生化与分子生物学
CiteScore
7.50
自引率
4.70%
发文量
73
审稿时长
3 months
期刊介绍: Established as the leading journal in the field, Glycobiology provides a unique forum dedicated to research into the biological functions of glycans, including glycoproteins, glycolipids, proteoglycans and free oligosaccharides, and on proteins that specifically interact with glycans (including lectins, glycosyltransferases, and glycosidases). Glycobiology is essential reading for researchers in biomedicine, basic science, and the biotechnology industries. By providing a single forum, the journal aims to improve communication between glycobiologists working in different disciplines and to increase the overall visibility of the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信