{"title":"人类呼吸道合胞病毒的全基因组分析提供了进化动力学的见解。","authors":"Lu-Lu Chen, Chu-Ci Tong, Yu-Xian Zhao, Yan-Peng Zheng, Xiang-Lei Peng, Yuan-Hui Fu, Jin-Sheng He, Jie-Mei Yu","doi":"10.1093/gbe/evaf093","DOIUrl":null,"url":null,"abstract":"<p><p>Human Respiratory syncytial virus (HRSV) is a leading cause of acute lower respiratory tract infections. It is essential to monitor its genomic characteristics. In this study, we analyzed the variation and evolutionary features of HRSV A and HRSV B using whole-genome data, with a focus on their evolutionary features post-COVID-19. Our findings revealed: (i) the mutation rates of HRSV A genes were generally higher than those of HRSV B genes, with the primary mutation directions for both subtypes being C to T, T to C, G to A, and A to G; (ii) multiple lineages of both subtypes that were prevalent during the pandemic are no longer circulating, likely related to the founder effect caused by non-pharmaceutical interventions; (iii) the lineage-defining amino acids on the neutralizing antigens F and G of the circulating lineages post SARS-CoV-2 pandemic exhibited significant temporal specificity; (iv) HRSV B predominated over A in 2023, and the lineage-defining amino acids of the HRSV B F protein located on or very close to major neutralizing antigenic sites, and several lineage-defining amino acids of the G protein were under strong positive selection. These observations suggested that the HRSV B showed stronger adaptive evolutionary features compared to HRSV A post-pandemic. Combining with the fact that several lineage-defining amino acids are located in the replication-related proteins, we hypothesized a potential model of synergistic evolution mediated by multi-protein mutations in the adaptive evolution of circulating strains. However, the impact of these amino acid changes on the viral properties requires further experimental validation.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12120135/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genome-Wide Analyses of Human Respiratory Syncytial Viruses Provide Insights into Evolutionary Dynamics.\",\"authors\":\"Lu-Lu Chen, Chu-Ci Tong, Yu-Xian Zhao, Yan-Peng Zheng, Xiang-Lei Peng, Yuan-Hui Fu, Jin-Sheng He, Jie-Mei Yu\",\"doi\":\"10.1093/gbe/evaf093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human Respiratory syncytial virus (HRSV) is a leading cause of acute lower respiratory tract infections. It is essential to monitor its genomic characteristics. In this study, we analyzed the variation and evolutionary features of HRSV A and HRSV B using whole-genome data, with a focus on their evolutionary features post-COVID-19. Our findings revealed: (i) the mutation rates of HRSV A genes were generally higher than those of HRSV B genes, with the primary mutation directions for both subtypes being C to T, T to C, G to A, and A to G; (ii) multiple lineages of both subtypes that were prevalent during the pandemic are no longer circulating, likely related to the founder effect caused by non-pharmaceutical interventions; (iii) the lineage-defining amino acids on the neutralizing antigens F and G of the circulating lineages post SARS-CoV-2 pandemic exhibited significant temporal specificity; (iv) HRSV B predominated over A in 2023, and the lineage-defining amino acids of the HRSV B F protein located on or very close to major neutralizing antigenic sites, and several lineage-defining amino acids of the G protein were under strong positive selection. These observations suggested that the HRSV B showed stronger adaptive evolutionary features compared to HRSV A post-pandemic. Combining with the fact that several lineage-defining amino acids are located in the replication-related proteins, we hypothesized a potential model of synergistic evolution mediated by multi-protein mutations in the adaptive evolution of circulating strains. However, the impact of these amino acid changes on the viral properties requires further experimental validation.</p>\",\"PeriodicalId\":12779,\"journal\":{\"name\":\"Genome Biology and Evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12120135/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology and Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gbe/evaf093\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evaf093","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
Genome-Wide Analyses of Human Respiratory Syncytial Viruses Provide Insights into Evolutionary Dynamics.
Human Respiratory syncytial virus (HRSV) is a leading cause of acute lower respiratory tract infections. It is essential to monitor its genomic characteristics. In this study, we analyzed the variation and evolutionary features of HRSV A and HRSV B using whole-genome data, with a focus on their evolutionary features post-COVID-19. Our findings revealed: (i) the mutation rates of HRSV A genes were generally higher than those of HRSV B genes, with the primary mutation directions for both subtypes being C to T, T to C, G to A, and A to G; (ii) multiple lineages of both subtypes that were prevalent during the pandemic are no longer circulating, likely related to the founder effect caused by non-pharmaceutical interventions; (iii) the lineage-defining amino acids on the neutralizing antigens F and G of the circulating lineages post SARS-CoV-2 pandemic exhibited significant temporal specificity; (iv) HRSV B predominated over A in 2023, and the lineage-defining amino acids of the HRSV B F protein located on or very close to major neutralizing antigenic sites, and several lineage-defining amino acids of the G protein were under strong positive selection. These observations suggested that the HRSV B showed stronger adaptive evolutionary features compared to HRSV A post-pandemic. Combining with the fact that several lineage-defining amino acids are located in the replication-related proteins, we hypothesized a potential model of synergistic evolution mediated by multi-protein mutations in the adaptive evolution of circulating strains. However, the impact of these amino acid changes on the viral properties requires further experimental validation.
期刊介绍:
About the journal
Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.